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Democratic mass matrices from five dimensions
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We reconstruct the standard model quark masses and the Cabibbo-Kobayashi-Maskawa~CKM! matrix from
a five-dimensional model, with the fifth dimension compactified on anS1/Z2 orbifold. Fermions are localized
only at the orbifold fixed points and the induced quark mass matrices are almost democratic. Two specific
versions of our model with 15 and 24 parameters are presented, and for both versions we can reproduce the
quark mass spectrum and CKM matrix correctly to the level they are observed in current experiments.
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I. INTRODUCTION

The standard model~SM! has been the most satisfacto
and widely recognized theory of particle interaction. To
extent, this is an effective theory, certain parameters of wh
are estimated and then refined by increasing high-preci
experiments. However, this also means that the dynam
origin of some of these parameters is not found within
SM. One example is the pattern of family mixing charact
ized by the Cabibbo-Kobayashi-Maskawa~CKM! matrix,
which in turn is related to the SM fermion mass spectr
and CP violation. Recently, considerable attention has be
directed to phenomenological models with extra dimensi
since, among many other things, they can offer potential
swers to puzzling questions related to the SM.

In theories with compact extra dimensions, each origi
field in higher-dimensional space can be effective
‘‘viewed’’ as a tower of Kaluza-Klein~KK ! states in equiva-
lent 4D theories after compactification processes. If the
is assumed to be the low-energy manifestation of a high
dimensional theory, the tower’s lowest state~or KK zero
mode! is identified as a SM field. In Ref.@1# ~see also earlier
works @2,3#!, by introducing aZ2-invariant Yukawa interac-
tion between a background scalar field and a fermion field
5D theory, after anS1/Z2 compactification, one can obtain
nontrivial ~i.e., localized! solution for the KK zero-mode
wave function along the fifth dimension~brane scenario!.
From a 4D point of view, any interaction term is now ass
ciated with a coupling being the overlap integration of ex
dimensional wave functions of related fields. One then
flexibly control this 4D theory effective coupling by regula
ing the localized wave functions along the extra dimensi
This very interesting mechanism has found potential ap
cations in many problems such as proton decay suppres
@3,4#, fermion mass hierarchy@5–9#, CP violation @10,12#,
etc.

In this work, we discuss the problem of the quark ma
spectrum and mixing angles by making extensive use o
democratic structure for the mass matrices. We find tha
democratic structure for the mass matrices~DMM ! is a par-
ticularly convenient choice, because it raises quite natur
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in the brane picture, and it can adequately generate both
quark mass spectrum and CKM matrix to the precision
termined by current experimental data. Previous works d
ing with fermion mass hierarchy andCP violation within the
split-fermion scenario@6,9–12# focus on placing fermion
families on different positions in the bulk, with the possib
ity to make mass matrix elements, originating from co
plings between geographically very distant families, appro
mately zero. This highly hierarchical mass matrix approa
however, requires additional techniques~see Sec. II! because
naively localizing fermions in an arbitrary position along th
extra dimension may contradict theS1/Z2 orbifold compac-
tification being used. In the DMM approach, we can avo
this subtlety by localizing all fields only at the two fixe
points of the orbifold, while we break the family symmet
by modifying the detailed shapes of their wave function
Further, the approach turns out to be more symmetric to

Our work is structured as follows: in Sec. II we introduc
the Lagrangian to generate pure-phase mass mat
~PPMM! and DMM within a fermion localization mecha
nism, in Sec. III we give the description of parameter spa
and in Sec. IV we present the numerical method and rep
the results for the mass spectrum and CKM matrix for the
parameter version of our model and in Sec. V for the
parameter version. Finally we give a brief conclusion of t
work in Sec. VI.

II. FORMALISM

A. Fermion localization mechanism

We first briefly review the mechanism of fermion loca
ization in extra dimensions@1–3#. We begin with the 5D
Lagrangian for a single massless fermion interacting wit
real background scalar field. The fifth dimension is comp
with support@0,L#. The generalization to the case with di
ferent families of fermions is straightforward:

L5c̄~x,y!@ igm]m2g5]y2 f f~x,y!#c~x,y!

1 1
2 ]mf~x,y!]mf~x,y!2 1

2 ]yf~x,y!]yf~x,y!

2
l

4
@f2~x,y!2V2#2. ~1!
©2004 The American Physical Society10-1
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It is important that this Lagrangian is invariant under aZ2
symmetry1

f~x,y!→F~x,y![2f~x,L2y!, ~2!

c~x,y!→C~x,y![g5c~x,L2y!. ~3!

To obtain the chiral zero mode for fermions as they are in
SM, it is necessary to compactify the 5D theory on anS1/Z2
orbifold through the imposition of the following relations o
the fields,

f~x,2y!5F~x,L2y!5f~x,2L2y!, ~4!

c~x,2y!5C~x,L2y!5c~x,2L2y!, ~5!

which constrain the fermion left-handed component and
scalar wave functions to be antisymmetric, and the ferm
right-handed component to be symmetric at the orbif
fixed pointsy50,L. This in turn gives rise to a stable an
nonconstant VEV solution for the background scalar fi

whenL is sufficiently large (L.1/AlV2),

^f~x,y!&5h~y!5V tanhS m
y

L D tanhFmS 12
y

L D G1O~e2m!,

~6!

wherem[LAlV2/2 characterizes the extent of the brane
the transverse direction, to which standard model ch
quarks are going to be confined. Clearly, the VEV kin
antikink approximation~6! holds only form.1. After per-
forming a chiral decomposition

c~x,y!5cR~x!jR~y!1cL~x!jL~y!, ~7!

one obtains the massless~zero-mode! fermion wave func-
tions satisfying the motion equation associated with L
grangian~1!:

jR~y!5
1

NR
expS 2 f E

0

y

h~y8!dy8D
5

1

NR
expFFS my1

1

tanhm
ln

coshm~12y!

coshmy coshm D G ,
~8!

jL~y!5
1

NL
expS f E

0

y

h~y8!dy8D
5

1

NL
expF2FS my1

1

tanhm
ln

coshm~12y!

coshmy coshm D G ,
~9!

whereF[ fA2/l andNL,R are the normalization factors.
Now let us mention some important properties of the

zero-mode solutions that are relevant to the present w

1A bare mass term of fermion is forbidden by this symmetry.
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First, both solutions~8! and~9! are symmetric at the orbifold
fixed pointsy50,L, so the right component survives and th
left component vanishes by contradiction with the orbifo
boundary conditions~5! assuring the single-handedness
SM fermions. By inverting the sign ofg5 in ~3! one can
change the chirality of the surviving fermion.

Second, the sign of the Yukawa couplingf decides the
localization position of the surviving chiral zero-mode ferm
ons along the extra dimension; iff .0 it is y50, if f ,0 it is
y5L. Localizing fermions at an arbitrary location other tha
the two fixed points in the bulk requires additional exte
sions of the Lagrangian such as odd-mass terms@5# or two
background scalar fields@6#. In the next section, sticking jus
to the minimal localization mechanism, we exhaust all p
sibilities of placing different SU(2)L representationsQ, U,
andD at the two fixed points and find that, in all configur
tions, this is indeed sufficient to obtain the right quark ma
spectrum and CKM matrix. Remarkably, this minimal loca
ization mechanism also features a democratic structure
the quark mass matrices, because fields of identical SU(L
3U(1)Y gauge symmetry (Qi ’s, Ui ’s, or Di ’s) are local-
ized at the same point along the extra dimension. Small
viations from a democratic mass matrix, which is necess
in any realistic model, are realized in our approach
slightly modifying the fermions wave functions.

Third, different from other works in literature, here w
make use of the exact solution for the zero-mode wave fu
tions ~8! and ~9! in place of a Gaussian profile approxim
tion.

B. Quark flavor mixing

In the spirit of SM, we now introduce three SU(2)L dou-
blets Qi and six SU(2)L singletsUi , Di ( i 51,2,3) whose
zero modes are identified, respectively, with the SM qu
chiral componentsqi , ui , di after orbifold compactification.
The Higgs doublet zero mode is assumed to be unifo

along transverse direction@H(x,y)5H(x)/AL#.
We construct a general 5D Lagrangian concerning th

fermion families

Lf5(
i 51

3

Q̄i~x,y!iD” 5Qi~x,y!1~Qi↔Ui !1~Qi↔Di !

1 (
i , j 51

3

k5,i j
u Q̄i~x,y!is2H* ~x,y!U j~x,y!

1 (
i , j 51

3

k5,i j
d Q̄i~x,y!H~x,y!D j~x,y!1H.c. ~10!

In order to obtain a PPMM in 4D effective theory, we use t
following ansatz for 5D Yukawa couplings

k5,i j
u 5k5

u exp~ iu i j
u !, k5,i j

d 5k5
d exp~ iu i j

d !, ~11!

with k5,i j
u andk5,i j

d real positive. We note in particular in th
above ansatz that complex higher-dimensional Yukawa c
plings have universal absolute valuesk5

u , k5
d for both up and

down sectors, and family symmetry is broken only in t
0-2
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phases. The difference needed betweenk5
u andk5

d to eventu-
ally give rise to the up-down quark mass hierarchy can a
be accommodated conveniently in the brane picture w
more extra dimensions~Sec. II C!. The SM quarks obtain
masses via spontaneous symmetry breaking with the H

developing a VEVH(x,y)→(0,v/A2L)T ~note that SM chi-
ral fieldsqui andqdi have identical extra-dimensional wav
functions because they originally come from the same d
blet in higher-dimensional theory2!

E dy Lf→(
i 51

3

q̄ui~x!i ]”qui~x!1~qui↔qdi!1~qui↔ui !

1~qui↔di !1 (
i , j 51

3

@ q̄ui~x!Mi j
u uj~x!

1q̄di~x!Mi j
d dj~x!#1H.c., ~12!

where

Mi j
u 5

v

&
gYu exp~ iu i j

u !E dy jqi~y!ju j~y!, ~13!

Mi j
d 5

v

&
gYd exp~ iu i j

d !E dy jqi~y!jd j~y!, ~14!

with real, dimensionless effective couplingsgYu5k5
u/AL

andgYd5k5
d/AL. One has to notice that a pure-phase str

ture for the matricesMu andMd arises when the left-hande
zero mode ofQi are localized at the same position along t
extra dimension independently of the family indexi and the
same happens for the right-handed zero mode ofUi andDi .
Then as it is clear from Eqs.~13! and ~14! the elements of
each matrix differ only by a phase factor.

We first perform the usual transformation from gau
eigenbasis to mass eigenbasis

ui5URi j
u uj8 , di5URi j

d dj8 , ~15!

qLi
u 5ULi j

u qL j8u , qLi
d 5ULi j

d qL j8d , ~16!

where UL
u , UL

d diagonalize respectively the matrice
(MuMu†), (MdMd†):

diag~ umuu2,umcu2,umtu2!5UL
u†~MuMu†!UL

u , ~17!

diag~ umdu2,umsu2,umbu2!5UL
d†~MdMd†!UL

d ,
~18!

and whose product gives the CKM matrix

VCKM5UL
u†UL

d . ~19!

2As long asv/&.175 GeV,1/L, the Higgs zero mode is the
only mode that receives nonzero VEV@14#.
01501
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The origin of CP violation in weak interaction is related t
the phase appearing in the CKM matrix, which by virtue
above relations comes from the complexity of mass matri
~it is well known that real mass matrices do not give rise
CP violation!. The localization mechanism in 5D theor
clearly provides a direct control over the modulus of ea
mass matrix element, but it does nothing to their phases. T
is, a priori M u and Md may possess in total 18 arbitrar
phasesu i j

u , u i j
d .3 In the present work, stemming from th

interest in model’s simplicity, we just attribute four phas
fu1 , fu2 , fd1 , fd2 to elements ofMu ~sayM12

u , M23
u ) and

Md ~say M12
d , M23

d ). One can note here that Hermitian m
trices (MuMu†) and (MdMd†) have altogether six phase
but two of them are nonphysical and can be eliminated b
simultaneous transformation involving a single diagon
phase matrixK5diag„1,exp(ia),exp(ib)… @10#:

MuMu†→KMuMu†K†, ~20!

MdMd†→KMdMd†K†. ~21!

Now the four physical phases left inMuMu†, MdMd† can be
reproduced by the chosen configuration with four phase
Mu, Md.

Let us next consider the magnitude of mass matrix e
ments, whose complete expressions are

Mi j
u 5

v

&
gYu exp~ iu i j

u !E dyjqi~y!ju j~y!

5
exp~ iu i j

u !

NqiNu j
E dy

3expFFqiS mqiy1
1

tanhmqi
ln

coshmqi~12y!

coshmqiy coshmqi
D

1Fu jS mu jy1
1

tanhmu j
ln

coshmu j~12y!

coshmu jy coshmu j
D G ,

~22!

Mi j
d 5

v

&
gYd exp~ iu i j

d !E dyjqi~y!jd j~y!

5
exp~ iu i j

d !

NqiNd j
E dy

3expFFqiS mqiy1
1

tanhmqi
ln

coshmqi~12y!

coshmqiy coshmqi
D

1Fd jS md jy1
1

tanhmd j
ln

coshmd j~12y!

coshmd jy coshmd j
D G ,

~23!

3By rotating the right-handed quark fields one can absorb 3 ph
from each matrix, bringing to 12 the total number of phases.
0-3
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where onlyu12
u , u23

u , u12
d , u23

d are the nonzero phases. In
deed, without these phases, the solution satisfying the q
mass ratios and the CKM matrix cannot be obtained@13#.
Further, if these phases are small enough, the mass mat
structure transforms from almost pure-phaseM
'gYv/&$eiu i j % to almost democraticM'gYv/&$1%. All
our numerical solutions obtained below indeed clearly
flects this democratic structure. One very important adv
tage of a DMM is that it has three eigenvalues of ‘‘loo
hierarchy,’’ (0,0,3gYv/&), and by slightly modifying the
mass matrix elements from ‘‘1’’ one can reproduce the rig
mass spectrum and right CKM matrix. More specifically, b
cause small differences inF ’s andm’s induce small modifi-
cations in the corresponding wave function profilesj(y)’s,
Eqs.~22! and~23!, to recover realistic quark masses we w
attribute different values ofFi andm i to different flavors~the
quartic couplingl is kept universal!. Meanwhile we preserve
essential democratic structure by localizing fields from e
of the three groups~doublets and up and down-type single!
at the same point along the extra dimension regardles
family index. Choosing identical signs forFqi (Fui ,Fdi) for
different indicesi, one can fulfill this requirement.

Our approach hence is different from that of Ref.@9#
where wave functions of different chiral flavors are ve
carefully and distinctly constructed in the bulk so that th
overlaps render the correct mass spectrum. However, the
sociated CKM matrix found therein does not generate su
cientCP violation as to the level it is observed in meson ra
decays~as long as the model has only one extra dimensio!,
even when one assigns to each mass matrix element an
trary phase@10#. In the present work a DMM structure wil
be the key point to overcome this difficulty.

C. Six-dimensional model

With the model with just one extra dimension presented
the previous sections, one can fit the quark mass spec
and CKM matrix all by twisting around the pure-phase a
democratic structures of mass matrices. We in particular h
employed two different 5D Yukawa couplingsk5

u , k5
d

(k5
u/k5

d;60, Secs. IV and V! to generate up-down quar
mass hierarchy, whose nature was not seen directly wi
the framework of 5D theory. In this subsection, for the p
pose of completeness, we briefly mention a possible solu
to this issue, which consists of adding another spatial dim
sion to the theory.

Beginning with six-dimensional model, we can repeat
orbifold compactification procedure for the two extra dime
sions, one after the other, to secure the single chirality
zero modes. We choose to localize all doublets identic
along the sixth dimension~the same holds for up-type an
down-type singlets!. In the result, the 5D~now effective!
Yukawa couplingku

5 (kd
5) are just the product of 6D cou

plings ku
6 (kd

6) and theQ-U (Q-D) wave function overlap
along the sixth dimension. So by starting with a sing
Yukawa coupling (ku

65kd
6) in 6D theory, we can end up with

two different 5D couplings becauseU andD fields have been
placed differently fromQ fields along the sixth dimension
Further, the phases of the mass matrices’ elements could
01501
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be generated from 6D models~see details in Refs.@7#, @8#!.
Rather, the point we would like to emphasize here is th
extra dimension theory can potentially provide the necess
ingredients to reproduce 4D effective theory of particle
teraction.

III. DESCRIPTION OF THE PARAMETER SPACE

In this section we present the parameter space for
particular choice of the model considered with 24 para
eters. Also if the number of parameters is large, what ha
be said here is that the ‘‘naturality’’ of the parameters~gen-
erally all the values are of order one or differ by no mo
than one order of magnitude!, we believe, is the most impor
tant factor, and the parameter space found satisfies this
dition. The list of the parameters is the following:

~1! gYu andgYd .

~2! mqi5LAlVqi
2 /2, mui5LAlVui

2 /2, and mdi

5LAlVdi
2 /2, where i 51,2,3 are dimensionless quantitie

whose inverse is proportional to the thickness of the dom
wall.

~3! Fqi5A2/l f qi , Fui5A2/l f ui , andFdi5A2/l f di with
i 51,2,3 andf ’s being the Yukawa couplings appearing
Eq. ~1!.

~4! fu1 , fu2 , fd1 , and fd2 are the phases appearin
respectively, in the up and down mass matrices.

As it can be seen from this particular choice of the para
eter space, we decided to break family symmetry by cho
ing different values form i and f i for different indicesi ~to-
gether with four different phasesu12

u , u23
u , u12

d , u23
d

appearing in the mass matrices!, and at the same time to
break the left-right symmetry by different values for the le
component parametersmq and f q and the right componen
parametersmu , f u , md , and f d .

IV. RESULTS FOR MASS MATRICES FROM FIVE
DIMENSIONS

In this section we present the numerical results obtai
for the parameter space and for the physical quantities
Table I. We consider four different cases, which correspo
to all four possible ways of picking the sign of the Yukaw
couplingsf for the left and right components. The four di
ferent cases are the following:

~1! f qi.0 f ui.0 f di.0 denoted as~1 1 1!,
~2! f qi.0 f ui.0 f di,0 denoted as~1 1 2!,
~3! f qi.0 f ui,0 f di.0 denoted as~1 2 1!,
~4! f qi.0 f ui,0 f di,0 denoted as~1 2 2!.

The first case corresponds to the doublets and up- and do
type singlets all localized at the orbifold fixed pointy50.
The second case corresponds to the doublets and up
singlets localized aty50 while the down-type singlets ar
localized aty5L. The third case corresponds to the doubl
and down-type singlets localized aty50 while the up-type
singlets are localized aty5L. And finally the fourth case
corresponds to the doublets localized aty50, while both the
up- and down-type singlets are localized aty5L.
0-4
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The other four possible cases obtained when one cha
at the same time all the signs of the Yukawa couplings
just symmetrical to the four presented, with each wave fu
tion now localized at the other orbifold fixed point, and wi
symmetrical profile. So they do not present any new mix
pattern.

The approach we use to derive the parameter space
sists of minimizing a particular function, built in such a wa
that its global minima correspond to the region defined
the experimental constraints. This function is defined as

TABLE I. Central values and uncertainties for the masses of
6 quarks evaluated atMZ , for the two ratiosmu /md andms /md ,
for the absolute values of the CKM matrix elements, and theCP
parametersr̄, h̄.

xi ^xi& uxi
max2xi

minu/2

mu 2.3331023 0.4531023

mc 0.685 0.061
mt 181 13
md 4.6931023 0.6631023

ms 0.0934 0.0130
mb 3.00 0.11

mu /md 0.497 0.119
ms /md 19.9 3.9
uVudu 0.97485 0.00075
uVusu 0.2225 0.0035
uVubu 0.00365 0.0115
uVcdu 0.2225 0.0035
uVcsu 0.9740 0.0008
uVcbu 0.041 0.003
uVtdu 0.009 0.005
uVtsu 0.0405 0.0035
uVtbu 0.99915 0.00015

r̄ 0.22 0.10
h̄ 0.35 0.05
01501
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i 51

N ~xi
th2xi

min!2

^xi&
2 u~xi

min2xi
th!

1(
i 51

N ~xi
th2xi

max!2

^xi&
2 u~xi

th2xi
max!, ~24!

whereu(x) is the step function,N is the number of quantities
that we want to fit,xi

th is the predicted value for thei th
quantity,xi

min andxi
max fix the range for thei th quantity, and

^xi& is its average value. It is immediate to verify from E
~24! that when all the predicted quantitiesxi

th’s are contained
in the proper ranges, the functionE takes its minimum value
equal to zero. The set of parameters that correspond to a
value for the functionE is called a solution.

The minimization procedure we used is called simula
annealing@15–18#, and when the function that we want t
minimize depends on many parameters, this procedure se
to work more efficiently than others. In particular, the sim
lated annealing method is mostly used when the glo
minima are surrounded by a lot of local minima. In fact th
minimization process can find a global minimum also af
being trapped in a local minimum.

In the following we will present the characteristically im
portant numerical results for each of the cases mentio
above. We will present graphically together with the so
tions of the mass spectrum~Figs. 1–4! ~masses are given in
GeV and are evaluated at theMZ scale!, the CKM matrix
~Figs. 5–8!, and ther̄,h̄ CP parameters~composite Fig. 9!.
For each case we will also give one particular numeri
complete set of its 24 defining parameters~Table II!, the
quark mass matrices and quark mass spectra, the CKM
trix, and theCP parameters. Further, just for the purpose
demonstration, we will also present a pair of numerical ro
tion matricesUL

u† , UL
d , the parameter space~Fig. 10!, and

the plots of background scalar fields and the wave funct
profiles of the left and right components for the case~1 1
1! ~Fig. 11!. All complex phases are measured in radians

~1! f qi.0 f ui.0 f di.0:

e

q.
f

Mu~24!
~111 !557.81 GeVS 0.9814 0.9811e2 i0.0001 0.9705

0.9443 0.9438 0.9268ei0.0155

0.9938 0.9936 0.9870
D , ~25!

mu~24!
~111 !50.0027 GeV, mc~24!

~111 !50.677 GeV, mt~24!
~111 !5168.13 GeV, ~26!

Md~24!
~111 !50.975 GeVS 0.9973 0.9934e2 i0.0095 0.9955

0.9975 0.9996 0.9988e2 i0.1607

0.9880 0.9808 0.9845
D , ~27!

md~24!
~111 !50.0048 GeV, ms~24!

~111 !50.106 GeV, mb~24!
~111 !52.90 GeV. ~28!

In Eqs.~25! and~27! the mass matrices are written in a form that better shows the almost democratic structure. In E~31!
we give the expression for the CKM matrix, in Eq.~33! the values for theCP parametersr̄ and h̄, and the invariant area o
the unitary triangleJCP :
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UL~24!
u†~111 !5S 0.7429 20.102720.1315i 20.636110.1249i

20.306720.1223i 0.8123 20.466410.1167i

0.5823 0.558820.0028i 0.5905
D , ~29!

UL~24!
d~111 !5S 20.692410.0002i 20.429820.0234i 0.578310.0292i

20.020710.0031i 0.8141 0.5803

0.7212 20.389320.0191i 0.571810.0306i
D , ~30!

VCKM~24!
~111 ! 5S 20.9706 10.0927i 20.152920.1609i 0.002520.0027i

20.140810.1713i 0.974110.0232i 0.027420.0272i

0.011110.0019i 20.025220.0272i 0.998710.0334i
D , ~31!

FIG. 1. Solutions for the 6 quark masses corresponding tof qi.0 f ui.0 f di.0 for the 24 parameter space. The masses in GeV
evaluated at theMZ scale. The range for each mass is given by the edges of the corresponding window.
015010-6



are

DEMOCRATIC MASS MATRICES FROM FIVE DIMENSIONS PHYSICAL REVIEW D69, 015010 ~2004!
uVCKM~24!
~111 ! u5S 0.9750 0.2220 0.0037

0.2217 0.9744 0.0386

0.0113 0.0371 0.9992
D , ~32!

r̄~24!
~111 !50.28, h̄~24!

~111 !50.31, JCP~24!
~111 !522.231025, ~33!

with r̄ and h̄ defined as

r̄5Re~VudVub* Vcd* Vcb!/uVcdVcb* u2, ~34!

h̄5Im~VudVub* Vcd* Vcb!/uVcdVcb* u2, ~35!

FIG. 2. Solutions for the 6 quark masses corresponding tof qi.0 f ui.0 f di,0 for the 24 parameter case. The masses in GeV
evaluated at theMZ scale. The range for each mass is given by the edges of the corresponding window.
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andJCP as

JCP5Im~VusVub* Vcs* Vcb!. ~36!

~2! f qi.0 f ui.0 f di,0:

Mu~24
~112 !559.85 GeVS 0.9997 0.9899e2 i0.0007 0.9910

0.9887 0.9995 0.9992e2 i0.0018

0.9998 0.9952 0.9960
D , ~37!

mu~24!
~112 !50.0024 GeV, mc~24!

~112 !50.722 GeV, mt~24!
~112 !5178.7 GeV, ~38!

FIG. 3. Solutions for the 6 quark masses corresponding tof qi.0 f ui,0 f di.0 for the 24 parameter case. The masses in GeV
evaluated at theMZ scale. The range for each mass is given by the edges of the corresponding window.
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Md~24!
~112 !51.18 GeVS 0.8867 0.8337ei0.0122 0.9863

0.7955 0.7293 0.9428e2 i0.0951

0.8656 0.8090 0.9779
D , ~39!

md~24!
~112 !50.0051 GeV, ms~24!

~112 !50.082 GeV, mb~24!
~112 !53.1 GeV, ~40!

VCKM~24!
~112 ! 5S 0.974110.0303i 20.187010.1230i 20.000410.0041i

0.176510.1373i 0.972610.0479i 20.039020.0177i

0.009710.0061i 0.038020.0166i 0.999020.0144i
D , ~41!

r̄~24!
~112 !50.13, h̄~24!

~112 !50.40, JCP~24!
~112 !523.631025. ~42!

FIG. 4. Solutions for the 6 quark masses corresponding tof qi.0, f ui,0, f di,0 for the 24 parameter case. The masses in GeV
evaluated at theMZ scale. The range for each mass is given by the edges of the corresponding window.
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~3! f qi.0 f ui,0 f di.0:

Mu~24!
~121 !561.66 GeVS 0.9185 0.8840e2 i0.0006 0.9032

0.9920 0.9785 0.9865e2 i0.0000

0.9763 0.9557 0.9676
D , ~43!

mu~24!
~121 !50.0024 GeV, mc~24!

~121 !50.724 GeV, mt~24!
~121 !5176.1 GeV, ~44!

Md~24!
~121 !51.00 GeVS 0.9941 0.9357ei0.0870 0.9977

0.9851 0.9968 0.9403e2 i0.0035

0.9967 0.9853 0.9672
D , ~45!

FIG. 5. Solutions for the absolute values of the CKM matrix elements corresponding tof qi.0 f ui.0 f di.0 for the 24 parameter space
The range for each element is given by the edges of the window.
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md~24!
~121 !50.0048 GeV, ms~24!

~121 !50.082 GeV, mb~24!
~121 !52.9 GeV, ~46!

VCKM~24!
~121 ! 5S 0.973810.0363i 20.157610.1600i 20.000220.0036i

0.143710.1723i 0.972710.0444i 0.037010.0135i

20.007320.0081i 20.036210.0118i 0.999210.0084i
D , ~47!

r̄~24!
~121 !50.17, h̄~24!

~121 !50.36, JCP~24!
~121 !522.831025. ~48!

~4! f qi.0 f ui,0 f di,0:

FIG. 6. Solutions for the absolute values of the CKM matrix elements corresponding tof qi.0 f ui.0 f di,0 for the 24 parameter case
The range for each element is given by the edges of the window.
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Mu~24!
~122 !560.83 GeVS 0.8427 0.8188e2 i0.0053 0.8412

0.9893 0.9819 0.9889e2 i0.0003

0.9447 0.9293 0.9437
D , ~49!

mu~24!
~122 !50.0022 GeV, mc~24!

~122 !50.677 GeV, mt~24!
~122 !5168.3 GeV, ~50!

Md~24!
~122 !51.25 GeVS 0.7298 0.7668ei0.0218 0.5944

0.9438 0.9613 0.8640e2 i0.0525

0.8664 0.8936 0.7580
D , ~51!

md~24!
~122 !50.0050 GeV, ms~24!

~122 !50.081 GeV, mb~24!
~122 !53.1 GeV, ~52!

FIG. 7. Solutions for the absolute values of the CKM matrix elements corresponding tof qi.0, f ui,0, f di.0 for the 24 parameter case
The range for each element is given by the edges of the window.
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VCKM~24!
~122 ! 5S 0.975520.0108i 0.084820.2026i 20.002520.0022i

20.104320.1930i 0.971020.0847i 20.043510.0065i

20.000720.0113i 0.042610.0024i 0.999010.0112i
D , ~53!

r̄~24!
~122 !50.13, h̄~24!

~122 !50.31, JCP~24!
~122 !522.931025. ~54!

FIG. 8. Solutions for the absolute values of the CKM matrix elements corresponding tof qi.0, f ui,0, f di,0 for the 24 parameter case
The range for each element is given by the edges of the window.
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By looking at the four cases one can notice that all m
matrices have almost democratic structure with deviati
from democracy for the up and down sector, which depe
on the different cases. In particular, the situation with
components localized at the same orbifold fixed point~1 1
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1! has both mass matrices very close to a DMM. The m
matrices, except the different Yukawa prefactors, are v
similar. In this case a small top mass seems to be favo
~Fig. 1!. For the configuration with the doublets localized
the zero orbifold fixed point and both the up and down s
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FIG. 9. Solutions forr̄ and h̄ of all four possible cases for the 24 parameter space~clockwise from top left!: ~1 1 1!, ~1 1 2!, ~1
2 2!, ~1 2 1!. The delimited area is the allowed region in the (r̄,h̄) plane.
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glets at the other orbifold fixed point~1 2 2!, the devia-
tions from a pure democratic mass matrix are large for b
mass matrices. Also in this case a small top mass seems
favored ~Fig. 4!. The situation is different in the other tw
cases where the up- and down-type singlets are localize
different orbifold fixed points. In particular, the case with t
doublets and down-type singlets right components locali
at the zero fixed point and the up-type singlets at the o
orbifold fixed point~1 2 1! seems to be the one that allow
a larger range for the top-quark mass values~Fig. 3!. In this
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case the deviation from a pure democratic mass matrix
the up sector is bigger than the one for the down sector.
we will show in the next section this is also the only case
which we were able to find solutions for the 15 parame
version of the model. The fourth case, where the doub
and up-type singlets are at the same orbifold fixed po
while the down-type singlets are at the other orbifold fix
point ~1 1 2!, gives for the top-quark mass a very narro
value-region around 178 GeV~Fig. 2!. In this case the mas
matrix for the up sector is very close to a pure democra
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TABLE II. Parameter space values for the 4 different cases of the 24 parameter model and for the~1 2
1! case of the 15 parameter model.

(24)(111) (24)(112) (24)(121) (24)(122) (15)(121)

gYu 57.81 59.85 61.66 60.83 60.69
gYd 0.98 1.18 1.00 1.25 1.08
Fq1 1.389 0.482 3.152 2.233 1
Fq2 0.979 0.888 0.327 0.357 1
Fq3 0.787 2.522 0.485 1.069 1
Fu1 0.938 0.966 20.112 20.429 21
Fu2 0.843 0.725 20.629 21.476 21
Fu3 1.352 1.185 20.516 20.313 21
Fd1 1.344 21.024 1.062 20.323 1
Fd2 1.013 21.639 0.087 20.847 1
Fd3 1.437 20.014 1.244 22.480 1
mq1 2.252 2.279 1.467 2.087 2.513
mq2 3.367 2.474 2.142 2.236 1.928
mq3 2.660 1.234 2.458 2.130 1.993
mu1 1.965 1.755 1.942 1.126 1.177
mu2 2.060 2.597 1.658 1.006 1.562
mu3 1.496 2.000 1.452 1.322 1.152
md1 2.537 2.223 2.008 3.380 4.969
md2 3.157 2.079 1.820 1.736 5.427
md3 2.520 1.482 2.460 1.693 1.022
fu1 20.0001 20.0007 20.0006 20.0053 0.0153
fu2 0.0155 20.0018 20.0000 20.0003 20.0001
fd1 20.0095 0.0122 0.0870 0.0218 20.0423
fd2 20.1607 20.0951 20.0035 20.0525 20.0279
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mass matrix while the deviation from it is larger for th
down sector. What is important to say here is that by look
at the four different cases, it seems that deviation from
DMM is bigger when left and right components are localiz
at different orbifold fixed points.

V. 15 PARAMETER VERSION

In this section we present the results for another partic
choice of the model with 15 parameters, which correspon
all the Yukawa couplings with the same absolute val
uFq,i u5uFu,i u5uFd,i u51. The family symmetry and left-righ
symmetry are now broken only through the parametersm’s
and phasesu’s. The important point is that for the 15 param
01501
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eter model choice we were able to find solutions only for
case corresponding tof q.0, f u,0, f d.0 with the condi-
tions that allm’s are bigger than one~6!. In the other three
cases we were not be able to find solutions if we decided
keep the constraintsm.1. The fact that we found solution
only for one of the four possible cases does not obviou
exclude completely the existence of solutions for the ot
three cases, but we believe that we can at least conclude
the configurationf q.0, f u,0, f d.0 is favored with respec
to the others.

In the following we give the numerical solutions for th
model’s parameters and physics quantities as in the case
24 parameter version~see also Table II!.

~1! Fq,i51 Fu,i521 Fd,i51:
Mu~15!
~121 !560.69 GeVS 0.8968 0.8619ei0.153 0.8986

0.9520 0.9267 0.9532e2 i0.0001

0.9469 0.9204 0.9481
D , ~55!

mu~15!
~121 !50.0024 GeV, mc~15!

~121 !50.713 GeV, mt~15!
~121 !5168.1 GeV, ~56!
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Md~15!
~121 !51.08 GeVS 0.9086 0.8874e2 i0.0423 0.9450

0.8414 0.8158 0.9829e20.0279

0.8496 0.8245 0.9798
D , ~57!

md~15!
~121 !50.0052 GeV, ms~15!

~121 !50.084 GeV, mb~15!
~121 !52.9 GeV, ~58!

VCKM~15!
~121 ! 5S 0.969620.0995i 0.091720.2038i 0.002410.0025i

20.114020.1919i 0.973720.0098i 0.043620.0055i

0.001810.0116i 20.042220.0044i 0.999010.0033i
D , ~59!

r̄~15!
~121 !50.16, h̄~15!

~121 !50.30, JCP~15!
~121 !522.931025. ~60!

FIG. 10. Summary of the 24 parameter space corresponding tof qi.0 f ui.0 f di.0.
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As it can be seen in the numerical example given abo
also in the case of the 15 parameter version, as for all the
parameter cases, both mass matrices for the up and d
sector are almost democratic. Our complete numerical sur
also indicates that the 15 parameter case favors a smal
mass, in contrast to the corresponding 24 parameter cas~1
2 1!, which gives a much larger range for the top-qua
mass.

VI. EPILOGUE

We suggest that using one extra dimension compacti
on anS1 /Z2 orbifold one is able to produce an almost dem
cratic mass matrix and obtain the right mass spectrum
right CKM matrix. In the model presented the zero mod
are localized only at the orbifold fixed points and differe
profiles for the zero mode wave functions are allowed.
show that in the case of the 24 parameter version of
model, for all four possible scenarios to localize the left- a
right-handed components of quarks at one or the other o
fold fixed point, we were able to fit the mass spectrum a
CKM matrix. On the other hand, in the case of the 15 p
rameter version of the model, which corresponds to hav
the universal absolute value of the Yukawa couplings w
the background scalar field for the different fermion familie
we were able to reproduce the right mass spectrum and r
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singlets at the other orbifold fixed point. Finally we just al
explain how the existence of a sixth dimension could acco
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tors.
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