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Democratic mass matrices from five dimensions
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We reconstruct the standard model quark masses and the Cabibbo-Kobayashi-M&kkiyanatrix from
a five-dimensional model, with the fifth dimension compactified or8H&, orbifold. Fermions are localized
only at the orbifold fixed points and the induced quark mass matrices are almost democratic. Two specific
versions of our model with 15 and 24 parameters are presented, and for both versions we can reproduce the
quark mass spectrum and CKM matrix correctly to the level they are observed in current experiments.
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[. INTRODUCTION in the brane picture, and it can adequately generate both the
quark mass spectrum and CKM matrix to the precision de-
The standard moddSM) has been the most satisfactory termined by current experimental data. Previous works deal-
and widely recognized theory of particle interaction. To aning with fermion mass hierarchy ar@P violation within the
extent, this is an effective theory, certain parameters of whiclsplit-fermion scenarig6,9—14 focus on placing fermion
are estimated and then refined by increasing high-precisiofamilies on different positions in the bulk, with the possibil-
experiments. However, this also means that the dynamicaiy to make mass matrix elements, originating from cou-
origin of some of these parameters is not found within theplings between geographically very distant families, approxi-
SM. One example is the pattern of family mixing character-mately zero. This highly hierarchical mass matrix approach,
ized by the Cabibbo-Kobayashi-Maskaw@KM) matrix,  nowever, requires additional techniguese Sec. )lbecause
which in turn is related to the SM fermion mass spectrumpgjyely |ocalizing fermions in an arbitrary position along the

and CP violation. Recently, considerable attention has been,y - dimension may contradict t!8%/Z, orbifold compac-
directed to phenomenological models with extra dimenSionﬁfication being used. In the DMM ap;roach we can avoid

since, among many other things, they can offer potential ang,;s ety by localizing all fields only at the two fixed

Swers to p_uzzlm_g questions related_ to the_ SM. .. __points of the orbifold, while we break the family symmetry
In theories with compact extra dimensions, each orlglnaE modifying the detailed sh f thei f .
y g the detailed shapes of their wave functions.

field in higher-dimensional space can be effectiverF ther. th ht 10 b tric t
“viewed” as a tower of Kaluza-KleinKK) states in equiva- urther, the approach turns out to be more symmetric {0o.

lent 4D theories after compactification processes. If the SM ©Our work is structured as follows: in Sec. Il we introduce

is assumed to be the low-energy manifestation of a higheit® Lagrangian to generate pure-phase mass matrices
dimensional theory, the tower’s lowest staar KK zero (F’PMM) and DMM within a fermion localization mecha-
mode is identified as a SM field. In Ref1] (see also earlier NiSM, in Sec. Ill we give the description of parameter space,
works[2,3]), by introducing aZ,-invariant Yukawa interac- and in Sec. IV we present the numerical method and report
tion between a background scalar field and a fermion field irthe results for the mass spectrum and CKM matrix for the 24
5D theory, after arB'/Z, compactification, one can obtain a parameter version of our model and in Sec. V for the 15
nontrivial (i.e., localized solution for the KK zero-mode parameter version. Finally we give a brief conclusion of the
wave function along the fifth dimensio(brane scenarjo  work in Sec. VI.

From a 4D point of view, any interaction term is how asso-

ciated with a coupling being the overlap integration of extra

dimensional wave functions of related fields. One then can Il. FORMALISM

flexibly control this 4D theory effective coupling by regulat-
ing the localized wave functions along the extra dimension.
This very interesting mechanism has found potential appli- We first briefly review the mechanism of fermion local-
cations in many problems such as proton decay suppressiggation in extra dimension§l—3]. We begin with the 5D
[3,4], fermion mass hierarch{s—9], CP violation [10,12, | agrangian for a single massless fermion interacting with a
etc. real background scalar field. The fifth dimension is compact

In this work, we discuss the problem of the quark massyith support[0,L]. The generalization to the case with dif-
spectrum and mixing angles by making extensive use of g .ot tamilies of fermions is straightforward:
democratic structure for the mass matrices. We find that a

democratic structure for the mass matri¢B81M) is a par- £=w(x ivEd — 59— Fd(X X
ticularly convenient choice, because it raises quite naturally YOy, = v oy =TI JHxy)

A. Fermion localization mechanism

+ 304 b(X,Y) 3, b(XY) — 3 dyB(X,Y) dyp(X,Y)
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It is important that this Lagrangian is invariant undeZa  First, both solution$8) and(9) are symmetric at the orbifold

symmetry fixed pointsy=0,L, so the right component survives and the
left component vanishes by contradiction with the orbifold
d(x,y)—=P(X,y)=—d(x,L—y), (2)  poundary conditiong5) assuring the single-handedness of
SM fermions. By inverting the sign ofs in (3) one can
P(XY) =V (X,y)=ysh(X,L—y). (3 change the chirality of the surviving fermion.

Second, the sign of the Yukawa couplifiglecides the
calization position of the surviving chiral zero-mode fermi-
ons along the extra dimension;fi-0 itisy=0, if f<0 itis
y=L. Localizing fermions at an arbitrary location other than

To obtain the chiral zero mode for fermions as they are in th(?o
SM, it is necessary to compactify the 5D theory onS4fZ,
orbifold through the imposition of the following relations on

the fields, the two fixed points in the bulk requires additional exten-
X, —y)=®(X,L—y)= (X, 2L —y), 4 sions of the Lagrangian such as odd-mass td@h®r two
PO =) ( Y=ol y) @ background scalar field§]. In the next section, sticking just
P(x,—y)=T(x,L—y)=(x,2L—Y), (5 to the minimal localization mechanism, we exhaust all pos-

sibilities of placing different SU(3) representationg), U,
which constrain the fermion left-handed component and th@ndD at the two fixed points and find that, in all configura-
scalar wave functions to be antisymmetric, and the fermioriions, this is indeed sufficient to obtain the right quark mass
right-handed component to be symmetric at the orbifoldspectrum and CKM matrix. Remarkably, this minimal local-
fixed pointsy=0L. This in turn gives rise to a stable and ization mechanism also features a democratic structure for
nonconstant VEV solution for the background scalar fieldthe quark mass matrices, because fields of identical SU(2)
whenL is sufficiently large [>1/\\V?), xU(1)y gauge symmetryQ;’s, U;’s, or Dy’s) are local-

ized at the same point along the extra dimension. Small de-

y y viations from a democratic mass matrix, which is necessary
<¢(x,y))=h(y)=VtanI‘(,uE tan"{ﬂ( 1-7/| o), in any realistic model, are realized in our approach by
(6) slightly modifying the fermions wave functions.
Third, different from other works in literature, here we
where u= Lm characterizes the extent of the brane inmake use of the exact solution for th(_e zero—mode wave func-
the transverse direction, to which standard model chirafions (8) and(9) in place of a Gaussian profile approxima-

quarks are going to be confined. Clearly, the VEV kink-tion.
antikink approximation(6) holds only for u>1. After per-

forming a chiral decomposition B. Quark flavor mixing
. In the spirit of SM, we now introduce three SU(2Jou-
POOY) = YROERY) T L) EL(Y), @ blets Q; and six SU(2) singletsU;, D; (i=1,2,3) whose

zero modes are identified, respectively, with the SM quark
chiral componentsy;, u;, d; after orbifold compactification.
The Higgs doublet zero mode is assumed to be uniform
along transverse directidi (x,y) = H(x)/\/[].

1 oo We construct a general 5D Lagrangian concerning three
&r(y) = N—Rexr( _fJO h(y’)dy ) fermion families
1

F{ 1 coshu(1—y) ”
=-expF ,
Ngr

one obtains the masslesgero-modée fermion wave func-
tions satisfying the motion equation associated with La
grangian(1):

3
£1= 2, QXY)IPsQi(xY)+(Qi=Up) +(Qi=Dy)
® s
1 , + 2, K5 QUXYiaH (xy)Uj(xY)
SL(y)=N—Lexp(fJOh(y’)dy’) |
1 KB QUWYH( YD (xy)+He. (10

+ n
wy tanhu ~ coshuy coshu

M e

J’_

F{ ( 1 coshu(1—y) ” i
=—exg —F| ny I ,

+ n
N tanhu - coshuy coshu In order to obtain a PPMM in 4D effective theory, we use the
(9)  following ansatz for 5D Yukawa couplings

whereF=f\2/\ andN, g are the normalization factors. Kgjj= K5 eXpi 0};), K‘g” =k exp(i Gidj), (11
Now let us mention some important properties of these
zero-mode solutions that are relevant to the present workvith «s;; and Kg“ real positive. We note in particular in the
above ansatz that complex higher-dimensional Yukawa cou-
plings have universal absolute values, Kg for both up and
A bare mass term of fermion is forbidden by this symmetry.  down sectors, and family symmetry is broken only in the
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phases. The difference needed betwemand « to eventu-

PHYSICAL REVIEW [®9, 015010(2004

The origin of CP violation in weak interaction is related to

ally give rise to the up-down quark mass hierarchy can alséhe phase appearing in the CKM matrix,_which by virtue.of
be accommodated conveniently in the brane picture witfabove relations comes from the complexity of mass matrices

more extra dimensiongSec. I1Q. The SM quarks obtain

(it is well known that real mass matrices do not give rise to

masses via spontaneous symmetry breaking with the HiggSP violation). The localization mechanism in 5D theory

developing a VEVH(x,y) — (0p/y/2L)T (note that SM chi-
ral fieldsq,; andqq; have identical extra-dimensional wav

clearly provides a direct control over the modulus of each

e Mass matrix element, but it does nothing to their phases. That

d
functions because they originally come from the same douiS: & Priori M and M may possess in total 18 arbitrary

blet in higher-dimensional thedty
3

J dyﬁf—’igl Qui(X)180i(X) + (Ayi<dgi) + (Qui—U;)

3
+<quiedi)+ij2:1 [Qui(X)Mj u;(x)

phasesaIl , 9,‘} .2 In the present work, stemming from the
interest in model’s simplicity, we just attribute four phases
bu1s bu2s Pa1, Ggo to elements oMY (sayMy,, M5y and

MY (sayM9$,, M%,). One can note here that Hermitian ma-
trices MYM"T) and MMM have altogether six phases,
but two of them are nonphysical and can be eliminated by a
simultaneous transformation involving a single diagonal
phase matriXK =diag(1,exp{«),exp(g)) [10]:

+ (x)M id;(x)]+H.c., (12
o : MUM Ut KMUMUTK T, (20
where
MIMIT L KMIMITKT, (21)
2 gYUeXm G )J’ dy &ai(Y) €ui(y), 13 Now the four physical phases left MUM"T, MIM9T can be
reproduced by the chosen configuration with four phases in
MY, M9,
v . . .
_ exn(i 69 J' d _ (), 14 Let us next consider the magnitude of mass matrix ele-
) GvaeXi ) | dY €qi(y)ay(y) (4 ments, whose complete expressions are
with real, dimensionless effective couplings,,= Kg/ﬁ MUY = fd
andgyq= «2/ \/[ One has to notice that a pure-phase struc- 1 5 gY“eXm fi)) | dy&aily)€ui(y)
ture for the matrices!" andM¢ arises when the left-handed
zero mode ofQ; are localized at the same position along the exp(l 0i; P)
extra dimension independently of the family indeand the -
same happens for the right-handed zero mode;cdndD; .
Then as it is clear from Eqg13) and (14) the elements of ext Eo | uovat 1 coshugi(1-y)
each matrix differ only by a phase factor. ai| HaY tanhugi  CoShugiy coshpg,
We first perform the usual transformation from gauge
eigenbasis to mass eigenbasis L F ( v+ 1 coshyu,j(1-y)
uj| Huj tanhu; cosh,uu,y coshu,;
ui= Lliijuj/l di= UR|] ],a (15 (22)
ani= EijQL}J' qu:UEiqu,_?' (16) ;
= —gygexpi6? J dyégi i
where U!', U¢ diagonalize respectively the matrices " v2 Ovaexpibj) | dY&qi(y)éa(y)
(MUMUT), (MdeT):
exp(|0 )
diag [my|? Im/%,[m?) =Ut (MM UYL (17)  NgiNgj
. 1 coshugi(1—
diag|my|2, [ m4[2,[my|?) = UET(MIMT)UE x exd Foil sy + e Hall=y)
(18) tanhug  coshugy coshug,
and whose product gives the CKM matrix +Fgil paiy+ ! coshyq;(1~y)
i\ #aY T tanhug; - coshuqjy coshyeg,
Udj  COSNugjy COSNug)
Vem=ULTUL . (19 (23

2As long asv/v2=175 Ge\< 1/L, the Higgs zero mode is the
only mode that receives nonzero VEY4].

015010-3

3By rotating the right-handed quark fields one can absorb 3 phases
from each matrix, bringing to 12 the total number of phases.
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where only6Y,, 64, 6%,, 63, are the nonzero phases. In- be generated from 6D modefsee details in Refg7], [8]).

deed, without these phases, the solution satisfying the quaiRather, the point we would like to emphasize here is that,
mass ratios and the CKM matrix cannot be obtaih&d]. extra dimension theory can potentially provide the necessary
Further, if these phases are small enough, the mass matricéggredients to reproduce 4D effective theory of particle in-

structure  transforms  from almost pure-phasi teraction.

~gyv/v2{e'%i} to almost democratiM~gyv/v2{1}. All

our numerical solutions obtained below indeed clearly re- Ill. DESCRIPTION OF THE PARAMETER SPACE

flects this democratic structure. One very important advan- : .

tage of a DMM is that it has three eigenvalues of “loose " this section we present the parameter space for the
hierarchy,” (0,0,3yv/v2), and by slightly modifying the particular choice of the model considered with 24 param-

mass matrix elements from “1” one can reproduce the righteters'.AISO if t.he number“ of parqm:aters is large, what has to
mass spectrum and right CKM matrix. More specifically, be-2€ S@id here is that the *naturality” of the parametégen-

cause small differences i’'s and u's induce small modifi- erally all the values are of order one or differ by no more
cations in the corresponding wave function profiigy)’s, :Eha?fonte orde(rj(?;]magnltu)j?Ne bel|ev$, IS ;[jhe TOf_St |rt[1r|§)_0r-
Egs.(22) and(23), to recover realistic quark masses we will ant tactor, and theé parameter space found salisties this con-

attribute different values df; andu; to different flavorgthe d|t|oln. The l'zt of the parameters is the following:
quartic coupling\ is kept universal Meanwhile we preserve (1) gvy andgyg. 5 5
essential democratic structure by localizing fields from each (2)  pqi=LVAVGi/2,  pyi=LVAV/2,  and g,

of the three group&doublets and up and down-type singlets _ /)\Vﬁilz, wherei=1,2,3 are dimensionless quantities

at the same point along the extra dimension regardless Qfy,qse jnverse is proportional to the thickness of the domain
family index. Choosing identical signs féi,; (Fi,Fq;) for

different indicesi, one can fulfill this requirement. : e e e .
Our approach hence is different from that of REJ] (3) Foi= V2 g, Fui= V2T, andFg= V2 Ty with

where wave functions of different chiral flavors are veryizl*z'3 andf’s being the Yukawa couplings appearing in

carefully and distinctly constructed in the bulk so that theirEq'A(rl)' d he oh .
overlaps render the correct mass spectrum. However, the as-( ) bu1, Puz, da1, and ¢y, are the phases appearing,

sociated CKM matrix found therein does not generate suffifSPECtiVely, in the up and down mass matrices.
As it can be seen from this particular choice of the param-

cientCP violation as to the level it is observed in meson rare . ;
decays(as long as the model has only one extra dimension eter space, we decided to break family symmetry by choos-

even when one assigns to each mass matrix element an ari9 different values fop; andf; for diEferenltJ indicdesi (tg-
trary phasg10]. In the present work a DMM structure will 9&ther with four different phase®;,, 62, 015, 053
be the key point to overcome this difficulty. appearing in the mass matrigesind at the same time to

break the left-right symmetry by different values for the left
component parameteys, and f, and the right component
parameterse,, f,, puq, andfy.

With the model with just one extra dimension presented in
the previous sections, one can fit the quark mass spectrum
and CKM matrix all by twisting around the pure-phase and IV. RESULTS FOR MASS MATRICES FROM FIVE
democratic structures of mass matrices. We in particular have DIMENSIONS

employed two different 5D Yukawa couplingss, «3 In this section we present the numerical results obtained
(ki/k§~60, Secs. IV and Yto generate up-down quark for the parameter space and for the physical quantities of
mass hierarchy, whose nature was not seen directly withiffable |. We consider four different cases, which correspond
the framework of 5D theory. In this subsection, for the pur-to all four possible ways of picking the sign of the Yukawa
pose of completeness, we briefly mention a possible solutiogouplingsf for the left and right components. The four dif-
to this issue, which consists of adding another spatial dimenferent cases are the following:

sion to the theory.

Beginning with six-dimensional model, we can repeat the
orbifold compactification procedure for the two extra dimen- (@) fai=0fu,i>01fq<0 denoted ag+ + —),
sions, one after the other, to secure the single chirality of (3 fqi=0fui<<0f4>0 denoted a¢+ — +),
zero modes. We choose to localize all doublets identically (4 fqi=0fui<<0f4<0 denoted ag+ — —).

along the sixth dimensiofthe same holds for up-type and The first case corresponds to the doublets and up- and down-
down-type singlets In the result, the 5Dnow effectiveé  type singlets all localized at the orbifold fixed poipt=0.
Yukawa couplingk;, (k3) are just the product of 6D cou- The second case corresponds to the doublets and up-type
plings «¢ («§) and theQ-U (Q-D) wave function overlap singlets localized ay=0 while the down-type singlets are
along the sixth dimension. So by starting with a singlelocalized aty=L. The third case corresponds to the doublets
Yukawa coupling (5= «§) in 6D theory, we can end up with and down-type singlets localized wt=0 while the up-type

two different 5D couplings becauskandD fields have been singlets are localized at=L. And finally the fourth case
placed differently fromQ fields along the sixth dimension. corresponds to the doublets localized/at0, while both the
Further, the phases of the mass matrices’ elements could alsp- and down-type singlets are localizedyatL.

C. Six-dimensional model

(1) fqi>0fui>0fdi>0 denoted as+ + +),

015010-4
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TABLE I. Central values and uncertainties for the masses of the

6 quarks evaluated &, , for the two ratiosm,/my andmg/my,
for the absolute values of the CKM matrix elements, and Giie
parameterg, 7.

X; (xi) [x—xm2
my 2.33x10°° 0.45<10°3
m, 0.685 0.061
my 181 13
my 4.69x10°3 0.66x10°3
m 0.0934 0.0130
M 3.00 0.11
my,/my 0.497 0.119
ms/my 19.9 3.9
IVydl 0.97485 0.00075
[Vid 0.2225 0.0035
Vol 0.00365 0.0115
[Ved 0.2225 0.0035
[Ved 0.9740 0.0008
[V 0.041 0.003
[Vigl 0.009 0.005
Vil 0.0405 0.0035
[Vipl 0.99915 0.00015
) 0.22 0.10
7 0.35 0.05

PHYSICAL REVIEW [®9, 015010(2004

2 (Xith_ximin)z min th
E—i:lWe(Xi —Xi)
N (Xith_ximaX)Z

+2

i=1 (x)?

where#(x) is the step function is the number of quantities
that we want to fitx" is the predicted value for thith
quantity,x™" andx"® fix the range for theth quantity, and

(x;) is its average value. It is immediate to verify from Eq.
(24) that when all the predicted quantiti&%"s are contained

in the proper ranges, the functi@takes its minimum value
equal to zero. The set of parameters that correspond to a zero
value for the functiork is called a solution.

The minimization procedure we used is called simulated
annealing[15-18, and when the function that we want to
minimize depends on many parameters, this procedure seems
to work more efficiently than others. In particular, the simu-
lated annealing method is mostly used when the global
minima are surrounded by a lot of local minima. In fact this
minimization process can find a global minimum also after
being trapped in a local minimum.

In the following we will present the characteristically im-
portant numerical results for each of the cases mentioned
above. We will present graphically together with the solu-
tions of the mass spectruffigs. 1-4 (masses are given in
GeV and are evaluated at tté, scalg, the CKM matrix
(Figs. 5-8, and thep, » CP parameterscomposite Fig.

O(x"— xM),

(24)

The other four possible cases obtained when one chang®r each case we will also give one particular numerical
at the same time all the signs of the Yukawa couplings argomplete set of its 24 defining parametéi@ble I), the
just symmetrical to the four presented, with each wave funcguark mass matrices and quark mass spectra, the CKM ma-
tion now localized at the other orbifold fixed point, and with trix, and theCP parameters. Further, just for the purpose of
symmetrical profile. So they do not present any new mixingdemonstration, we will also present a pair of numerical rota-

pattern.

tion matricesU'", U¢, the parameter spad€ig. 10, and

The approach we use to derive the parameter space cotlie plots of background scalar fields and the wave function
sists of minimizing a particular function, built in such a way profiles of the left and right components for the cése +
that its global minima correspond to the region defined by+) (Fig. 11). All complex phases are measured in radians.

the experimental constraints. This function is defined as

0.9814 0.981@ '0-0001
0.9443
0.9938

M =57.81 Ge

Moy ' =0.0027 GeV, m

0.9973 0.993¢ 100095
0.9975
0.9880

M, ' =0.975 Ge

miloe ' =0.0048 GeV, m{,;"'=0.106 GeV, mi;"'=2.90 GeV.

(1) fqi>0f,;>0fgy>0:

0.9705
0.9438 0.92870155| | (25)
0.9936 0.9870
Con'=0.677 GeV, mi},"'=168.13 GeV, (26)
0.9955
0.9996 0.99gg 101607 ) (27)
0.9808 0.9845
(28

In Egs.(25) and(27) the mass matrices are written in a form that better shows the almost democratic structurg3it) Eq.
we give the expression for the CKM matrix, in E®3) the values for theCP parameterg and 7, and the invariant area of

the unitary triangl€lcp:
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FIG. 1. Solutions for the 6 quark masses corresponding,e 0 f ;>0 f;;>0 for the 24 parameter space. The masses in GeV are
evaluated at th&, scale. The range for each mass is given by the edges of the corresponding window.

0.7429 ~0.1027-0.1315 —0.6361+0.1249
ULt +1=| —0.3067-0.1223 0.8123 —0.4664+0.1167 |, (29
0.5823 0.5588 0.0028 0.5905

—0.6924+0.0002 —0.4298-0.0234 0.5783+0.0292

uft;, )=| —0.0207+0.0031 0.8141 0.5803 |, (30)
0.7212 —0.3893-0.0191 0.5718+0.0306
—0.9706 +0.0927 —0.1529-0.1609 0.0025-0.0027

Viinion=| —0.1408+0.1713  0.9741+0.0232  0.0274-0.0272 , (31)

0.0111+0.0019 —0.0252-0.0272 0.998# 0.0334
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-2
x 10
my(GeV) m,(GeV) my(GeV)

FIG. 2. Solutions for the 6 quark masses corresponding,te0f ;>0 fy <0 for the 24 parameter case. The masses in GeV are
evaluated at thd, scale. The range for each mass is given by the edges of the corresponding window.

0.9750 0.2220 0.0037
Viihinel=| 02217 0.9744 0.038p, (32)
0.0113 0.0371 0.9992

Py =028, 73, =031, I =—2.2x10°, (33

with p and# defined as
P=Re(VydVipVeaVen)/ | VeaVenl, (34)
7=IM(VyqVENVEN o) [ VeaVil2, (35)
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FIG. 3. Solutions for the 6 quark masses corresponding,te 0 f,;<0fy>0 for the 24 parameter case. The masses in GeV are
evaluated at th&, scale. The range for each mass is given by the edges of the corresponding window.

andJcp as
Jep=IM(VysVipVeVen)- (36)

(2) f4i>0 f,;>0 fg<0:
0.9997 0.989 10:0007 0.9910

M{i '=59.85 Ge\ 0.9887 0.9995 0.99@2 100018 (37)
0.9998  0.9952 0.9960
M '=0.0024 GeV, m{,,'=0.722 GeV, m{}; '=178.7 GeV, (38)

015010-8



DEMOCRATIC MASS MATRICES FROM FIVE DIMENSIONS PHYSICAL REVIEW [®9, 015010(2004

- 2000 [ C
800 E - 14000 f-
700 £ 1750 :— [
= - 12000 [
600 1500 | i
- = 10000 [
500 1250 = L
E - 8000 [
400 F 1000 F :
300 750 8000 i
200 500 4000 —
100 250 E 2000 H
O |IIII|II O: | | O_hIIII|IIII|I
0.2 0.25 0.65 0.7 170 180 190
x 10
m,(GeV) m.(Gev) m(GeV)
= 14000 =
- C 2250
6000 [ I =
L 12000 :— 2000 —
5000 [ I =
C 10000 | 1750
- i 1500 £
4000 - 8000 I E
- i 1250 [
3000 6000 [ 1000 E
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FIG. 4. Solutions for the 6 quark masses corresponding,te 0, f,;<0, f4;<O for the 24 parameter case. The masses in GeV are
evaluated at th&, scale. The range for each mass is given by the edges of the corresponding window.

0.8867 0.833& 00122 0.9863

Miy '=1.18 Ge\ 0.7955 ~ 07293  0.9428'099%1) (39)
0.8656  0.8090 0.9779
My, '=0.0051 GeV, m{5;'=0.082 GeV, mi;~'=3.1 GeV, (40)

0.9741+0.0303 —0.1870+0.1230 —0.0004+0.0041

Viiiow=| 0176501373  0.9726+0.0479  —0.0390-0.0177 |, (4D

0.00970.0061  0.0380-0.0166 0.9990-0.0144
?(;4;7):0'13% 7;4; '=0.40, JC+P?24 —3.6x10°°. (42
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FIG. 5. Solutions for the absolute values of the CKM matrix elements correspondigg~0 ;>0 f4;>0 for the 24 parameter space.

The range for each element is given by the edges of the window.
(3) fgi>0 f;<0 fy;>0:

0.9185 0.884@ '0-0006 0.9032
M5, =61.66 Ge\ 0.9920 0.9785 0.986@5 '*99%°
0.9763 0.9557 0.9676

Mis ' =0.0024 GeV, mi,~'=0.724 GeV, m{5,"'=176.1 GeV,

0.9941 0.935¢°%70  0.9977
Mi,"'=1.00 Ge\ 0.9851 09968  0.94@8 0%
0.9967  0.9853 0.9672
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FIG. 6. Solutions for the absolute values of the CKM matrix elements correspondig~0 f,;>0 f4;<0 for the 24 parameter case.
The range for each element is given by the edges of the window.

M2 =0.0048 GeV, mi5,"'=0.082 GeV, m{,"'=2.9 GeV, (46)
0.9738+0.0363 —0.1576+0.1600 —0.0002-0.0036

Viuim=| 0.1437-0.1723  0.9727+-0.0444  0.0370+0.0135 (47)
—0.0073-0.0081 —0.0362+0.0118  0.9992+0.0084

Pay =017, 735 =036, b =—2.8x107%, (49)

(4) f4;>0 f,;<0 fg<0:
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FIG. 7. Solutions for the absolute values of the CKM matrix elements correspondfgg0, f;<0, f4;>0 for the 24 parameter case.
The range for each element is given by the edges of the window.

M/, '=60.83 Ge\ 0.9893

Mz '=00022 Gev, =077 Gev, mi;, '=1683 GeV.

Mz '=1.25 Ge

My '=0.0050 GeV, mi5,'=0.081 GeV, m{i,'=3.1 GeV,

0.8427 0.8188 10-0053

0.9447

0.7298 0.7668&°-0218
0.9438
0.8664

0.8412
0.9819 0.98g9 '0:0003| (49)
0.9293 0.9437

(50)
0.5944
0.9613 0.8640 100525 | (51)
0.8936 0.7580
(52)
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FIG. 8. Solutions for the absolute values of the CKM matrix elements correspondfgg-to, f,;<0, f4;<0 for the 24 parameter case.

The range for each element is given by the edges of the window.

0.9755-0.0108

0.0848-0.2026

—0.0025-0.0022

Viauiw=| —0.1043-0.1930 0.9710-0.0847 —0.0435}-0.0065 (53)
—0.0007-0.0113 0.0426+0.0024  0.9990+0.0112
Play '=0.13, 73, )=031, JSp,, =—2.9x10 ", (54)

By looking at the four cases one can notice that all masst) has both mass matrices very close to a DMM. The mass
matrices have almost democratic structure with deviationgnatrices, except the different Yukawa prefactors, are very
from democracy for the up and down sector, which dependimilar. In this case a small top mass seems to be favored
on the different cases. In particular, the situation with all(Fig. 1). For the configuration with the doublets localized at
components localized at the same orbifold fixed péint+ the zero orbifold fixed point and both the up and down sin-
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FIG. 9. Solutions foip and 7 of all four possible cases for the 24 parameter sgatkwise from top left (+ + +), (+ + —), (+
— =), (+ — +). The delimited area is the allowed region in the%) plane.

glets at the other orbifold fixed poirft- — —), the devia- case the deviation from a pure democratic mass matrix for
tions from a pure democratic mass matrix are large for boththe up sector is bigger than the one for the down sector. As
mass matrices. Also in this case a small top mass seems to ke will show in the next section this is also the only case for

favored (Fig. 4). The situation is different in the other two which we were able to find solutions for the 15 parameter
cases where the up- and down-type singlets are localized agrsion of the model. The fourth case, where the doublets
different orbifold fixed points. In particular, the case with the and up-type singlets are at the same orbifold fixed point
doublets and down-type singlets right components localizeavhile the down-type singlets are at the other orbifold fixed

at the zero fixed point and the up-type singlets at the othepoint (+ + —), gives for the top-quark mass a very narrow

orbifold fixed point(+ — +) seems to be the one that allows value-region around 178 GelFig. 2. In this case the mass

a larger range for the top-quark mass val(gg. 3). In this  matrix for the up sector is very close to a pure democratic
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TABLE Il. Parameter space values for the 4 different cases of the 24 parameter model and(for-the
+) case of the 15 parameter model.

(24)++9) (24)+7) (24— (24)=7) (15)(=*)
Ovu 57.81 59.85 61.66 60.83 60.69
Ova 0.98 1.18 1.00 1.25 1.08
Fau 1.389 0.482 3.152 2.233 1
Foo 0.979 0.888 0.327 0.357 1
Fos 0.787 2.522 0.485 1.069 1
Ful 0.938 0.966 -0.112 —0.429 -1
Fu 0.843 0.725 —0.629 —1.476 -1
Fus 1.352 1.185 —0.516 -0.313 -1
Far 1.344 -1.024 1.062 —0.323 1
Faz 1.013 —1.639 0.087 —0.847 1
Fas 1.437 -0.014 1.244 —2.480 1
Kqt 2.252 2.279 1.467 2.087 2.513
o 3.367 2.474 2.142 2.236 1.928
a3 2.660 1.234 2.458 2.130 1.993
Bt 1.965 1.755 1.942 1.126 1.177
o 2.060 2.597 1.658 1.006 1.562
Mua 1.496 2.000 1.452 1.322 1.152
a1 2.537 2.223 2.008 3.380 4.969
a2 3.157 2.079 1.820 1.736 5.427
Maa 2.520 1.482 2.460 1.693 1.022
b —0.0001 —0.0007 —0.0006 —0.0053 0.0153
bu2 0.0155 —0.0018 —0.0000 —0.0003 —0.0001
ba —0.0095 0.0122 0.0870 0.0218 —0.0423
ba2 -0.1607 —0.0951 —0.0035 —0.0525 —0.0279

mass matrix while the deviation from it is larger for the eter model choice we were able to find solutions only for the
down sector. What is important to say here is that by lookingcase corresponding th,>0, f,<0, f4>0 with the condi-

at the four different cases, it seems that deviation from aions that allu's are bigger than onés). In the other three
DMM is bigger when left and right components are localizedcases we were not be able to find solutions if we decided to
at different orbifold fixed points. keep the constrainta>1. The fact that we found solutions
only for one of the four possible cases does not obviously
exclude completely the existence of solutions for the other
three cases, but we believe that we can at least conclude that

. ) . i iorf ;> < >0 i
In this section we present the results for another partlcula%EeIﬁ : rcl)fgﬁgrr;atmrfq 0. fu<0, fq=0 is favored with respect

choice of the model with 15 parameters, which correspond to In the following we give the numerical solutions for the

ﬁll TS|IZUI-(|a—W|?: 9?Elihn_|9hse \;\gtmh-lthse rrsﬁ?(;ter a;nsglllétff_r.va;:?emodel’s parameters and physics quantities as in the cases of
q.il =1t uil ™= d,il = = 1y sy y Iant 54 parameter versio(see also Table )
symmetry are now broken only through the paramejéess

and phaseg's. The important point is that for the 15 param- (1) Fq;=1F,;=—1F4;=1:

V. 15 PARAMETER VERSION

0.8968 0.86160-153 0.8986

M5 "'=60.69 GeV 0.9520 ~ 0.9267  0.9582 0%t (55)
0.9469  0.9204 0.9481
mi15 ' =0.0024 GeV, mi5"'=0.713 GeV, m{j;"'=168.1 GeV, (56)
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FIG. 10. Summary of the 24 parameter space correspondifig e f ;>0 f;>0.

0.9086 0.887¢ 10-0423 0.9450

M5 =108 GeV 0.8414 08158  0.9829002%°| -
0.8496  0.8245 0.9798
My1y''=0.0052 GeV, my5"'=0.084 GeV, myy"'=2.9 GeV, (58)

0.9696- 0.0995 0.09170.2038 0.0024+0.002%

Vil =| —0.1140-0.1919  0.9737-0.0098  0.0436-0.0055 |, (59)
0.0018+0.0116  —0.0422-0.0044 0.9990+0.0033
BEIS;H:O'lG’ 7&;“:030' ‘]E:+P(71g)):_2'9><1075- (60)
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As it can be seen in the numerical example given above,
also in the case of the 15 parameter version, as for all the 24
parameter cases, both mass matrices for the up and down
sector are almost democratic. Our complete numerical survey
also indicates that the 15 parameter case favors a small top
mass, in contrast to the corresponding 24 parameter(gase
— +), which gives a much larger range for the top-quark
mass.

VEV

VI. EPILOGUE

We suggest that using one extra dimension compactified
on anS, /Z, orbifold one is able to produce an almost demo-
cratic mass matrix and obtain the right mass spectrum and
right CKM matrix. In the model presented the zero modes
are localized only at the orbifold fixed points and different
profiles for the zero mode wave functions are allowed. We
show that in the case of the 24 parameter version of the
model, for all four possible scenarios to localize the left- and
right-handed components of quarks at one or the other orbi-
fold fixed point, we were able to fit the mass spectrum and
CKM matrix. On the other hand, in the case of the 15 pa-
rameter version of the model, which corresponds to having
the universal absolute value of the Yukawa couplings with
the background scalar field for the different fermion families,
we were able to reproduce the right mass spectrum and right
CKM only in the case with the doublets and down-type sin-
glets localized at one orbifold fixed point and the up-type
singlets at the other orbifold fixed point. Finally we just also
explain how the existence of a sixth dimension could account
for the different Yukawa couplings for the up and down sec-
tors.

Wavefunction Profile
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