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Quantum teleportation with close-to-maximal entanglement from a beam splitter
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We investigate theoretically quantum teleportation by means of the number-sum and phase-difference vari-
ables. We show that a unitary beam-splitter transformation turns two-mode Fock-states into close-to-maximally
entangled states, in this case close approximations of the relative-phase eigenstates. These states could be
created experimentally using on-demand single-photon sources, but also with any second-quantized bosonic
system(e.g., trapped ions, Bose-Einstein condensatd&e show that such “quasi-EPR” states can yield
near-unity fidelity for the teleportation of coherent states and of “Sdinger cat” states.
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[. INTRODUCTION guantum teleportation using phase-difference eigenstates. In
this article, we adopt the definition of Luis andr8aez-Soto
Quantum teleportatiofil,2], “the disembodied transport [26] of phase-difference eigenstates, generalizegttative-
of an unknown quantum state from one place to anotf@)” phaseeigenstateg27], and investigate the significance of
is an important component of quantum information. It holdssuch number-phase EPR states in the context of number-
great promise for communication between quantum computPhase teleportation.
ers, the realization of quantum gafe§ and the implemen- Because the creation of such states in the laboratory is
tation of quantum error correctids]. Quantum teleportation Still @ challenge for more than two photof®7], we explore
is based on maximally entangled states, a purely quanturifie use of approximate EPR states, or quasi-EPR states, such
mechanical feature, initially little noticed outside research ors created when a twin Fock state suchrg|n), passes
the fundamental issues of quantum theory such as th#rough a lossless beam splitter—which would be very sim-
Einstein-Podolsky-RoseEPR) paradoX6]. Producing, pre- Ply realizable with on-demand single-photon sources. CMM
serving, and detecting high quality entanglement is an exfound that, for such states, the teleportation fidelity is
perimental challenge in making reliable quantum teleporterounded by the classical limit of 50% for an arbitrary coher-
(and in quantum information in geneyalnitial experiments ~ ent state, but reaches 100% for a “Sotirger cat” state
based on discrete and finite Hilbert spaces have been suproportional to,|a)+|—a) [13]. This is due, as CMM
cessful in proving the principle, but hindered by low efficien- points out, to the fact that half the quantum amplitudes of
cies in the production and detection of entangled photon#his entangled state are null, and does not affect the cat state
[7-9]. The use of continuous quantum variables for teleporwhich presents the same characterigpcovided that the
tation[2,10—13 offers more straightforward detection meth- nonzero amplitudes coincigle
ods and also the interesting feature of an infinite Hilbert The gist of this paper is to show that this nulling of half of
space, much richer in possibilities for encoding quantum inthe EPR amplitudes corresponds to a very narrow set of ex-
formation. The first continuous-variable teleportation experi-perimental conditions and disappears as soon as the beam
ment[3,10] used quadrature-squeezed electromagnetic fieldsplitter or its input Fock state are not perfectly balanced
and beam-splitter entanglement, and was based on the ekperfectly” referring, for the beam splitter, to the Heisen-
perimental realization of the EPR paradfik4] (see also berg limif). As a result, we show that a wider set of quasi-
[15,16)) using continuous quantum optical variabjég,18.  EPR states than considered by CMM do yield near-unity
Another set of interesting, in part continuous, variables ididelity for teleportation of both coherent and cat states.
constituted by the photon number and the phase, which are In Sec. Il we derive and evaluate close-to-maximally en-
canonically conjugate in the same sense as energy and tint@ngled, or quasi-EPR, states that can be created by sending
[19]. The use of these variables has been proposed to realiZ¢0-mode Fock states through a lossless beam splitter. In
the EPR paradokl7] and the corresponding maximally en- Sec. lll we describe number-phase teleportation for ideal
tangled states are therefore usable for teleportation by meafPR states, and for quasi-EPR states. We then analyze the
of the detection of the photon number difference and phas#idelity of quasi-EPR based teleportation of coherent and cat
sum[12], or of the photon number sum and phase differencétates.
[13,2Q. The latter proposal, besides being more practical and
connected to the actively explored field of Heisenberg- Il. GENERATION OF CLOSE-TO-MAXIMALLY
limited interferometry[21-25, has the advantage to be ENTANGLED STATES BY A BEAM SPLITTER
suited to experimental realization with bright squeezed
sources, such as the ones demonstrated in [R6f16. In
Ref. [13], Cochrane, Milburn, and MunrgCMM) study We begin by recalling the definition of the Schwinger
representatioh28], widely used in quantum optics, of a non-
degenerate two-mode field in terms of a fictitious spin. This
*Corresponding author. Email address: opfister@virginia.edu  spin is defined as

A. The Schwinger representation
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Jy a'b+b'a

1 SkSe =01, SIS/ = Ok - 9
J=| 3, |==| —i(a’b—b'a) |, (1) ; KA Z Kk Tk ®
J 2 a'a—b'b . . .
z An example of the EPR state is the eigenstate, introduced by
t t Luis and Sachez-Sotd26], of the operators of the photon-
a'at+b'b

(2) number sum and phase difference of two modeand b.

Heeding the point made by Trifonat al.[27], we will call
o this state arelative-phaseeigenstate rather than a phase-
wherea andb are the photon annihilation operators of eachyiterence eigenstate, thus recalling that the formal definition
mode. The pr12y3|cal meaning of these operators is the followss 5 two-mode quantum phase difference operator does not
ing [26,25: J° represents the total photon numbéy,the  coincide with the (problematia definition of two single-

photon number difference between the two modes, Bnd  mode quantum phase operatdi2d]. The relative-phase
are the phase difference, or interference, quadratures. Higenstate is

stems from this thae'®z is the relative phase shift operator
i0J

afa+b'b
5 +1]1,

2

and e'™x is the rotation carried out by a beam splitter 1 N ™
(homo-/heterodyne measuremént$he eigenstates of the |pNy= ——= > e |n),IN—n)y, (10
fictitious spin are the two-mode Fock states VN+1n=0
i m),=[naYal )b, (3)  wherepN = go+2mr/(N+1) is the phase differencéy is
the total photon numbekp, an arbitrary phase origin, and
and the respective eigenvaluesJéfandJ, are given by re[ON]. The phase difference is adequately defined with
resolution 1N, i.e. at the Heisenberg limit. In the Schwinger
. Natn, N representation, Eq10) becomes
===, (4)
2 2 _
i
i ime(2D); .
Ny— Ny |6y = —= > @M jmy), . (11)
m= 5 (5) 2]+1 m=-j

) ] Trifonov et al. introduced the more general state
The Schwinger representation thus makes use of the homo-

morphism from SW2) onto S@3), which allows one to rep- 1 N y
resent any unitary operation on the two-mode field by a ro- [{oMNYy = > € 6 )|n>a|N_n>ba (12)
tation. The general S@) transformation JN+1 n=0
B 12(at ) B 2(a ) which they stated can still be considered a relative-phase
a cos; e ” sin; € 7 . eigenstate, however involved or even arbitrary the real set
b= (b ) {6V}, may be with respect tm [27]. Indeed, the whole
1 —singe‘ i12(a—7) cosge‘ i12(a+ y) 0 basis can always be constructed by applyingNhel phase

® shift operator® % = to [{6M}), with {6V}, being an ini-
tial relative-phase distribution between the two modesd

wherea, B, andy are the Euler angles, corresponds to thel- Nonetheless, we will show in Sec. Il that successful quan-
rotation operatore~'®ze #ye 1" (4=1). A lossless tum teleportation demands full initial knowledge {af{ "},

beam splitter corresponds to the values which is also the relative phase of the entanglement between
Alice and Bob, and the number-phase teleportation protocol
a=—y=mx/2, B==2arccosR, (77 becomes very complicated ") is not linear inn.

Finally, we recall that maximal entanglement is only at-
whereR is the reflectivity of the beam splittéthe transmit-  tained whenN— .
tivity T is such thaR+T=1).
C. Generation of EPR and quasi-EPR states

B. Ideal number-phase EPR states The experimental realization of relative-phase eigenstates

By definition, a maximally entangled two-mode state, oris an arduous problem. Recently, Trifonewal. reported the

EPR state, is a two-mode quantum state experimental realization of a relative-phase eigenstaf
for N=2 [27]. Their astute method uses a nonbalanced beam
EPR=" sulk).lI):, 8 splitter to create a two—r_node state, all of whose .amplltudes
[EPR % alkal)o ® have equal modulus. This method is not general in the sense

that it cannot work perfectly foN>2, as we will see later
such that any reduce@ingle-modé density matrix of this (and is immediate from Fig.)2However, the use of a beam
state Tj ,(|EPR(EPR) is proportional to the identity ma- splitter to generate EPR or quasi-EPR states stems from quite
trix, which yields general arguments indeed.
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FIG. 1('20)M°d”|“3 of the quantum amplitudes of beam-splitter £ 5 Modulus of the quantum amplitudes of the beam-splitter
output | ¢y (B)) for a relative-phase eigenstate input versus theoutput 1200 (ﬁ)>:|‘1’(1%)(,3)) versus the beam-splitter angjé
beam-splitter angl@. N=20 photons. N=20 photons.

The studies of Heisenberg-limited interferomeft}l -25  lowest values o (this could be viewed as a quantum Abbe-
have led to a thorough understanding of the subtle quanturRorter experiment, with a low-pass filtey. These states
optical properties of the beam splitfe0,22—29. In particu-  are, forN=2j even,
lar, a balanced beam splitter swaps the amplitudes and phase

properties of the impinging two-mode way81], and can [wMy=1j 0),, (15)
also be used to entangle nonclassical optical fig3d32,33. _ _ _
As is readily seen in the Schwinger representation, a bal- | Wy =[1h]j 0),+ 4] 1),+fL,]j —1),J/C;, (16)

anced beam splitter corresponds ter& rotation aroundx '
and therefore transforms a state from aiéntensity differ- ~ and so on, wittC, = (Sf__ ,[f}]%) Y2 and are
ence to axisY (phase differenge

In the case of an EPR state such as 8q), the phase W@ =[1j 3),+]i—3)J/V2, (17)
difference is squeezed and the intensity difference is anti- _ _ _ _
squeezed. Experimentally, this is achievable by sending an |q;J(4)>:[le|j %>Z+f1 l|'_%>z+f]3|j%>z+f] 3]
intensity-difference-squeezed state through a beam splitter 2 "2 2 T2
[15]. To illustrate this, let us examine the beam-splitter out- —3y]/cs (19)
put of the relative phase stat®l): slai =

and so on, foN=2j odd. As we will now see, sending these

(21) — @~ iBy 4(2))
66" (B)=e |¢6™") (13 states through a beam splitter gives output states closely re-
sembling EPR states. We call these output states quasi-EPR
1 j , states.
=— > TML(B)im),, (14) We start with the simplest on€l5), which has already

V2j+1 m=-] been considered by CMM. We denote the general state ro-

tated by a beam splitter by

j _i im’ (642D + 7/2) i ; ) o
where fin (B) =2y, €770 7T dyyy (), with im'(B)=e"PHjm’), (19

d’ . (B)=(jm|e”"A%|jm’) a rotation matrix element taken
real by convention and proportional to a Jacobi polynomial

i
m=—]j

[34]. This state is displayed fas,=0 in Fig. 1. As expected, = > immdl L (B)im),. (20

the result is a narrow state in photon numlgee., f},—0

very fast agm|—j). _ Figure 2 displays the modulus of the quantum amplitudes of
It is straightforward to see that sendifg{?)(w/2)) [w(D()) versusp [see Eq(7)] andm.

through another, balance@ & = 7/2), beam splitter will re- One can see thg— /2 is still necessary for maximal

construct the initial relative phase eigenstatg’)). (One  entanglement. The very valyé= /2 leads to a problem,
can see thaB— 7/2 is necessary to maximal entanglement,however, because every other amplitude of the state is zero,
since the spread of the state must cover all values of thgs is well known[30,25,13. This was recalled by CMM
projections of the spin.Now, since|#§?)(7/2)) contains  when they investigated the use of this state as a teleportation
but a few nonzero amplitudes, a reasonable method for gerchannel and found that, because of this, teleportation fidelity
erating close approximations of EPR states with a balancedias bounded by 50%to the notable exception of Schro
beam splitter is to consider “quantum filtered” input states, dinger cat statgsThis situation, however, is changed if one
which are derived fron ¢§)2')(7r/2)) by keeping only the considers an ever-so-slightly imbalanced beam splitter: Fig.
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3 dispays the modulus and phase of the coefficients ofannot give more thaaAR~ 10" ¢, N cannot exceed f(pho-
110 0(90))=[¥{F(9C°)) and |10 0(85.5))  tons in this case. This “Heisenberg-limit’-type sensitivity
=|V{y(85.5)). may be quite general, as hints of the same scaling have also
Clearly, |W{{)(85.5)) is closer to an EPR state than pheen found in the tolerance to error of entanglement opera-
|T{E(907): it has the same spread but much more evenjons (optical pulse timesof N trapped iong35]. In fact, by
amplitudes, practically constant fer5<ms=5, and no ze- taking a closer look at Fig. 2, one can see that the amplitudes
roes at all. The phase distribution is not constant and nopresent IM-period oscillations versug. These oscillations
simple but this just means that it is a general relative phasgre of significant contrast, with the state amplitudes often
state of the form of Eq(12), which is still a legitimate EPR  reaching zero. This, therefore, can pose a problem for experi-
state in the context we chose for the definition of the relat'vementally definingl‘P}”(B)) asj increases.

(1) i i- ; .
phase. In fact|¥35(85.9)) is the best quasi-EPR state  pis hroplem disappears, however, as soon as one uses a

(1) i
|¥15(B)), VB. In general, we find that the anglé, that o ojaporate input state, such 4§ (17). Such an input

gives the bgstquaerPR state is given by the following pheétate could be obtained using stimulated emission from a
nomenological formula:

single atom, starting from blf}”)z state and having the two

. 1 beams shine simultaneously and noncollinearly on the ex-

ﬁQ=§(1— N)' (21)  cited atom. One will also want to have fast nonradiative de-

cay from the ground state of the transition so as to prevent

which we have tested, to the best of our numerical Capab"i_subsequentzabsorption, as in laser media. Figure 5 displays

ties Eq.(21), for N = 200, 2000, and 20000 photons: the the statd ¥ {(8)). - _

resulting state*ﬁ‘l’f”(ﬂ@) for j=100, 1000, and 10000, are ~_ Even though the N oscillations are still present, they are

plotted in Fig. 4. Note that the size of the lawAlat region ~ Significantly attenuated as there are no zero amplitudes, even

does scale proportionally . at 8= /2. One can thgrgfore uge= 7r/2 in this case, \.NhI'Ch
Note that all digits are significant in the beam splitter’s Presents the non-negligible advantage dfaa phasedistri-

parameters of Fig. 4, which points to an interesting situationbution (3m/4Vm) for this state [W{?(w/2)) [unlike

Let us assume that on-demand single-photon sources becorﬁEfl)(,BQD in Fig. 3]. This is of great importance for tele-

a reality (not an unreasonable asumptiowhich would al-  portation, as we will see in the next section. Finally, it is

low the production of| V), in the laboratory. Equation straightforward and unsurprising to show that the more

(21) nevertheless poses a serious experimental constraint @aborate(less lowm-pass filteregi reconstructiong W {*))

the tolerance of the beam-splitter reflectivily because the (16) and|\If}4)> (18) give even better results: more even am-

required precision o8, i.e., onR, increases withN if one  plitudes at still constant phase. We will, however, restrain our

wants to resolvéW{Y(Bo)) from [¥{(7/2)) and itsj in-  investigations to the two staté¥ ("( o)) and| ¥ (?)(7/2)),

convenient zeroes. RoughltR~A B~ 1/N. Since a beam which are the simplest ones and are also within reasonable

splitter using state-of-the-art optical coatings and polishingeach of foreseeable future technology.
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3
g %127 BQ = 89.955 deg FIG. 5. Modulus of the quantum amplitudes of beam-splitter
0004 R = 50.04% or 49.96% output|W2,,(B)) versus the beam-splitter angdeN= 21 photons.
o
0.08
3 making a joint measurement dhand.A such that both are
4 0.06 projected onto a maximally entangled state. This prevents
% 0.04 Alice from obtaining any quantum information about the tar-
o get state, which as such is destroyed in the process. In turn,
0.02 - : . 2 o
o said target state is transferred, by “entanglement transitivity
= 0.00 I I I I 1 from 7to 55, i.e., to Bob, who may then reconstruct the exact
E’ 0 200 400 600 800 1000 target state o8 using the classically transmitted results of
g Alice’s measurementéwvhich contain no quantum informa-
o tion whatsoever The conceptually difficult part is to figure
out what measurements should be used by Alice to maxi-
005 Bo = 89.9955 deg mally entangle her two systerp$é and7. This question was
' R = 50.004% or 49.996% answered by Vaidman in connection with the EPR paradox
’ ' [2].
0.04 In the case of number-phase teleportation, use is made of
the commuting operators number sivna+ N, and (Hermit-
0.02 - ian) relative phas¢26]
o N+1
000 , , , , , dra= 2 2 1) oMM, 22
0 2000 4000 6000 8000 10000 T
m whose measurements project the jolR state onto a joint

eigenstate of the total number and the relative phase such as
Eqg. (10). If the same type of entangled state is shared be-
tween Alice and Bob, perfect teleportation can in principle
rbe achieved. Let us consider the general case where the ini-
tial total state is

FIG. 4. Modulus of the quantum amplitudes|df{"(Bq)) for
N=200, 2000, and 20000 photofsee Fig. 3 foN=20). All states
have an almost identical appearance, and are practically indisti
guishable from perfect relative-phase eigenstates foM/5<m
<N/5, approximately.

" N ing®
IIl. NUMBER-PHASE QUANTUM TELEPORTATION (N) _ e _
® = Cy|M ———Ma/N—n)g.
)@t ) g mE:o ml >Tngo *N+1| )al )8

In this section we briefly recall the definition of number-
phase teleportatiof13] and extend it to general relative-

phase states. We then consider the use of the quasi-ERRe assume Alice’s measurements ¢+ N, and of dra
states that were derived above.

yield the respective eigenvalugsand % . The phase dif-
ference measurement should be thought of as a Heisenberg-
A. Ideal entanglement resource limited interferometric measurement, whose experimental

Quantum teleportation relies on a maximally entangled™Plémentation was proposed and numerically modeled, for

state shared by the sender, Alice, and the receiver, Bob. THE€ States consu_jert(ed) here, in Rdf23,25. The joint TA

entanglement concerns two physical systeisand 5, re-  State is thus left indY)ra, and the total state after Alice’s

spectively. Alice is in possession of and also of syster; ~ Measurement is

whose “target” state is the quantum information she needs to W

transmit. The teleportation process consists, for Alice, in ) =€ (D) 1A Yp)e (24)

(23
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N @ into a “flat-phase” state for whiché) = (V= cst, Vn.
|0g)s=C(q) >, e @ 4N ¢ |k+N—-q)g, (25  This transformation may be single-mode and applied by Bob,
ko as U?H(N)}|wB>B=|lr//out>Bv or two-mode and applied by Al-

where ko=max{0,—N] and C(q)=[Z}_ lci/?1 Y2 To ice, by measuringJ?H(N)}&TAU?(}N)}. In the aforementioned

exactly recover the target state, Bob must then perform, ogase OfI‘I’,(l)(BQ)% one possibility is

B, a photon number shiftLl3] of g—N and a phase shift of
N .

¢E )+ ¢gq), l.e., U{Bg} _ ei(fl)Q(ﬂ./z)Né, (32)

(oM 4 @R

|oup=€Pr 2 INePy | s (26)

which can be interpreted as an intensity-dependent phase

(In the particular case where Alice’s measurement results A&hift and might therefore be realizable with a Kerr nonlinear-

g=N and¢{@=— ¢, Bob does not have to do anythiig.
One can see from this that the phase distribution of the initial .It is somewhat puzzling that this additional step is needed

entanglement resource has to be corrected for, along with [16M1) may indeed be considered as a legitimate relative
Alice’s measurement resulf.this distribution is unknown or phase eigenstate, since it is used in the corresponding rela-
too 'complicated to correct, telepprtation vyill faﬂ'hi; cor-  tive phase measdrement of B&9). Our conclusion is that
rection can also be made by Alice, by simply shifting hery,o gefinition(29) of the general relative-phase operator is
phase operator, i.e., using not valid in the context of quantum teleportation, possibly
because the full EPR nature of the eigenstate of(EB). is
used. Indeed, if one only cares about measuring the phase
. - . s difference between the two modes, any type of initial relative
instead ofpra. [J;=(Nr—N,)/2 here] hase distributiof 6}, will give the same result, as illus-

Note that this requirement that the entanglement phase_ Fated in Ref.[27]. This obviously ceases to be true when

perfectly known is a very general one and not at all Spec'f'capplying in a teleportation operation, where the complete

to our part'CUIar choice Of the OF’“C?" phase variable for thenature of the entangled state must be known. In other words
teleportation protocol. This was pointed out by van Enk in

yet, even though the whole relative-phase eigenbasis — and

Ref. [36]. ;
: . o hence the operator — may be generally defined based upon
In light of what we have already discussed, it is clear that (N) . . R
2 state such a|SPJ(2)(7T/2)>, which has a flat phase distribu- any general stat§{#'™}) with arbitrary phase distribution

Ny {H(N)} , it does in fact matter for teleportation thel ,n
; ing™N _ Lismia ; ; ; n Jn . . oy
tion e"?r "=e">™", is perfectly suited for this teleportation corresponds to a feasible physical measurement, thereby lim-
protocol. It is, however, interesting to investigate the use ofting the generality of relative phase states usable for telepor-
the more exotic stat¢¥{"(B5)) in this case. The phase tation.
distribution is neither flat nor simplé=ig. 3), one phenom-

enological description of it bein@i”¢§N)=ei”2”’2. We are
thus in the case of a general relative phase Siga€"})
given by Eq.(12). If the initial entanglement is given by Eq. ~ We now turn to the use of quasi-EPR states as the en-
(12), tanglement resource, and show how arbitrary coherent and
Schralinger cat states can be successfully teleported. Our

[ r@ {6} ag, (28)  evaluation of teleportation performance will contain no as-

. , . sessment of decoherence and will be based on the pure-state
then the phase difference operator is not given by (28) fidelity

e 19 e el % 27

B. Quasi-EPR resource

but by [27]
© N+1 F:K ‘/’out| W)Iz- (33
b0 = i N) (N |19
bra= 2 2 € oM} oM (oM eIz,
N=0r=0 29 The entanglement resource is now a quasi-EPR state,
and the postmeasurement total state is N
. @ |QEPR Ag= 2, sp [N)alN—n)g, (34)
| i) = €' @247 D) 2 ), (30) n=0

where=N_|sN|2=1. As announced before, we only treat the
cases of W{Y(Bo)) and | W{?)(7/2)). Their respective de-
(31 compositions in terms of Eq34) are found using Eqg3)—

_ _(5) and(19), and their amplitudes are, respectively,
which shows that Bob needs more than a mere phase shift to

properly reconstrudty): with {61, fully known, he needs o
the unitary transformatiotJ s, that transforms|{ ¢™"}) sy=i "N o o(Bo), (35

q
i g(N) _ p(N) o ()
|'//B>B:C(Q)k_2k e'%-k % e ks e\ [k+N—0)g,
— R0
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FIG. 6. Teleportation fidelity of amv=3 coherent state, using
the quasi-EPR resour¢®$2),(B)) versus the beam-splitter angte
and the number-sum measurement regqulN=21 photons.

1 T
N - N/2
Sp=—=I n+{N2) [dn—(le), (1/2)(5)

X a
_ldw—z(N/Z),—llz E) : (36)
The postmeasurement total state is
o) =16 a® | e)s (37)

q
ik @
lWe)a=C(a) 3, e k05" o s [k+N=q)g, (39)
— R0

whereC(q)=(S{_y, lcil?[sN|?) "2 This yields

q
|'ﬁout>B:C(Q)k_2k CkSE'_klk>B, (39
- R0
and the fidelity is
q 2
2 |Ck|25’c;l—k
K=ko
F(a)=—3 (40)
3 ledlsy il

FIG. 7. Teleportation fidelity of anvr=3 cat state, using the
quasi-EPR resourcbl'(zzl),z(ﬁ)>, versus the beam-splitter ang
and the number-sum measurement regulN=21 photons.

PHYSICAL REVIEW A 65 052313

FIG. 8. Teleportation fidelity of amv=3 coherent state, using
the quasi-EPR resour¢®{}(3)), versus the beam-splitter ange
and the number-sum measurement requiN=20 photons.

Before we plotF(q) for the two quasi-EPR states, we must
address the question of the dependence of the fidelity on the
measured valug of the number sum: this implies condi-
tional teleportation even for an ideal relative-phase state
(sN=const ¥N,n), which should not be.

Equation(40) has an upper bound, which can be found by
using the Schwartz inequality:

q q q 2
> |Ck|2527k|2$ > a2 |Ck|2|slc\1‘7k (41)
K=Kko K=kq kK=kg
The fidelity is thus bounded by
q
Fla)= 2 | (42

=Ko
The physical meaning of this Schwartz inequality thus is the
following: if ko=0 (i.e., g<N, which is automatic folN
—o0) andqis very large compared to the spread of the target
state(denoted bykpyax, such thatc,. _=0), then the in-
equality (42) becomes

kmax

Fla)= 2, |c?=1,
k=0

(43

FIG. 9. Teleportation fidelity of anvx=3 cat state, using the
quasi-EPR resourcél'(l%))(ﬁ)), versus the beam-splitter ange
and the number-sum measurement regqul =20 photons.
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1 B= Beo As mentioned earlier, we considered two different target
states, a simple coherent stéte+ and a “Schralinger cat”
. 0.8 state, the macroscopic, definitely nonclassical superposition
E 0.4
0] *® n
S 0.4 n &
A Cllayr+|-a)y)=C2 [1+(~1)"}=[n)r, 45
/\ -
0.2
0 a5 90 where C=(2+ 2e~2*) =12 We calculated the teleportion
B (deq) fidelity F(q,B) for both these states with=3, using the

two quasi-EPR statef?{?)(8)) and |¥{"(p)) [assuming

99.3% atB=B,=85.5 (0.5 steps. Note thatB=90° gives the the initial-entanglement-phase correcti@2) is successfully

classical fidelity valueE =49.8%, consistently with the results of @Pplied by Bol for the respective entanglement resources.
CMM. Results are plotted in Figs. 6-9.

Once again, the limited spread @qof the high fidelity
which corresponds to the fidelity of the ideal EPR resourcef€gion is only due to the limitations of our computation. Had
All of this is in fact ensured by maximal entanglemdxit ~We been able to perform the simulations with a lafyethis
— o0, and a finitek .. When this is fulfilled, the probability ~€ffect would have disappeared. These teleportation protocols
that q<k..x becomes negligible and the teleportation be-are l_JncondmonaI. What is essential is that, in all cases, we
comes unconditional. Otherwise, one can have severe fidelityPtain F=100%. This occurs fo=/2 in Figs. 6 and 7

FIG. 10. Cross section of Fig. 8 fay=19. The peak value is

limitations, as in the worst casde<q<Kpmay: and for 8= B (see Fig. 1Din Figs. 8 and 9, thereby con-
firming our analysis that quasi-EPR states can be efficient
=kmax teleportation resources.
Flay< 2 led’<1, (44

where the sum over the target state probability becomes trun- IV. CONCLUSION

cated. Besides being lower, the fidelity will also depend we have demonstrated that efficient quantum teleporta-
strongly on the value of] (conditional teleportation tion is indeed possible with close-to-maximally entangled
In our computationsi is limited to a few tens of photons  states. We chose the simplest quasi-EPR states, which would
[calculating the staté¥ {thof Bo)) as in Fig. 4 is a lighter pe straightforward to generate should on-demand single-
computational load than that of calculatid\@f(lf){)(w/Z)}], photon sources become an experimental reality. Note, how-
making it difficult to approaciN— . Therefore, the fidelity ever, that the same formalism applies equally well to second-
displayed in our figures has a remaining dependence on thguantized bosons in general, which opens possibilities for the
value ofqg and the illusion of conditionality. The arguments use of trapped ions or Bose-Einstein condensates. We also
above should have, however, convinced the reader that sudhvestigated the use of generalized relative-phase states for
is not the true physical situation for number-phase teleportaguantum teleportation and showed that these states lead to
tion, which can be truly unconditional. As far as our numeri-serious complications if the basis “generatd{’d}) has a
cal results are concerned, it is simple to see that, for a cohemore complicated phase distribution than a simple phase off-
ent target statée) (a real, the high-fidelity region is given set. This therefore raises a question about the precise physi-
by g [Kmax:N—Kmin] WhereN>k .., i.e., qe[a®+a,N cal significance of the generalized relative-phase operator
—a’+al. (29) of Ref.[27].
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