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Quantum teleportation with close-to-maximal entanglement from a beam splitter
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We investigate theoretically quantum teleportation by means of the number-sum and phase-difference vari-
ables. We show that a unitary beam-splitter transformation turns two-mode Fock-states into close-to-maximally
entangled states, in this case close approximations of the relative-phase eigenstates. These states could be
created experimentally using on-demand single-photon sources, but also with any second-quantized bosonic
system~e.g., trapped ions, Bose-Einstein condensates!. We show that such ‘‘quasi-EPR’’ states can yield
near-unity fidelity for the teleportation of coherent states and of ‘‘Schro¨dinger cat’’ states.
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I. INTRODUCTION

Quantum teleportation@1,2#, ‘‘the disembodied transpor
of an unknown quantum state from one place to another’’@3#,
is an important component of quantum information. It ho
great promise for communication between quantum com
ers, the realization of quantum gates@4# and the implemen-
tation of quantum error correction@5#. Quantum teleportation
is based on maximally entangled states, a purely quan
mechanical feature, initially little noticed outside research
the fundamental issues of quantum theory such as
Einstein-Podolsky-Rosen~EPR! paradox@6#. Producing, pre-
serving, and detecting high quality entanglement is an
perimental challenge in making reliable quantum telepor
~and in quantum information in general!. Initial experiments
based on discrete and finite Hilbert spaces have been
cessful in proving the principle, but hindered by low efficie
cies in the production and detection of entangled phot
@7–9#. The use of continuous quantum variables for telep
tation @2,10–13# offers more straightforward detection met
ods and also the interesting feature of an infinite Hilb
space, much richer in possibilities for encoding quantum
formation. The first continuous-variable teleportation expe
ment@3,10# used quadrature-squeezed electromagnetic fi
and beam-splitter entanglement, and was based on the
perimental realization of the EPR paradox@14# ~see also
@15,16#! using continuous quantum optical variables@17,18#.

Another set of interesting, in part continuous, variables
constituted by the photon number and the phase, which
canonically conjugate in the same sense as energy and
@19#. The use of these variables has been proposed to re
the EPR paradox@17# and the corresponding maximally en
tangled states are therefore usable for teleportation by m
of the detection of the photon number difference and ph
sum@12#, or of the photon number sum and phase differen
@13,20#. The latter proposal, besides being more practical
connected to the actively explored field of Heisenbe
limited interferometry @21–25#, has the advantage to b
suited to experimental realization with bright squeez
sources, such as the ones demonstrated in Ref.@15,16#. In
Ref. @13#, Cochrane, Milburn, and Munro~CMM! study
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quantum teleportation using phase-difference eigenstate
this article, we adopt the definition of Luis and Sa´nchez-Soto
@26# of phase-difference eigenstates, generalized torelative-
phaseeigenstates@27#, and investigate the significance o
such number-phase EPR states in the context of num
phase teleportation.

Because the creation of such states in the laborator
still a challenge for more than two photons@27#, we explore
the use of approximate EPR states, or quasi-EPR states,
as created when a twin Fock state such asun&aun&b passes
through a lossless beam splitter—which would be very s
ply realizable with on-demand single-photon sources. CM
found that, for such states, the teleportation fidelity
bounded by the classical limit of 50% for an arbitrary coh
ent state, but reaches 100% for a ‘‘Schro¨dinger cat’’ state
proportional to, ua&1u2a& @13#. This is due, as CMM
points out, to the fact that half the quantum amplitudes
this entangled state are null, and does not affect the cat s
which presents the same characteristic~provided that the
nonzero amplitudes coincide!.

The gist of this paper is to show that this nulling of half
the EPR amplitudes corresponds to a very narrow set of
perimental conditions and disappears as soon as the b
splitter or its input Fock state are not perfectly balanc
~‘‘perfectly’’ referring, for the beam splitter, to the Heisen
berg limit!. As a result, we show that a wider set of qua
EPR states than considered by CMM do yield near-un
fidelity for teleportation of both coherent and cat states.

In Sec. II we derive and evaluate close-to-maximally e
tangled, or quasi-EPR, states that can be created by sen
two-mode Fock states through a lossless beam splitter
Sec. III we describe number-phase teleportation for id
EPR states, and for quasi-EPR states. We then analyze
fidelity of quasi-EPR based teleportation of coherent and
states.

II. GENERATION OF CLOSE-TO-MAXIMALLY
ENTANGLED STATES BY A BEAM SPLITTER

A. The Schwinger representation

We begin by recalling the definition of the Schwing
representation@28#, widely used in quantum optics, of a non
degenerate two-mode field in terms of a fictitious spin. T
spin is defined as
©2002 The American Physical Society13-1
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J5S Jx

Jy

Jz

D 5
1

2 S a†b1b†a

2 i ~a†b2b†a!

a†a2b†b
D , ~1!

J25
a†a1b†b

2 S a†a1b†b

2
11D , ~2!

wherea andb are the photon annihilation operators of ea
mode. The physical meaning of these operators is the foll
ing @26,25#: J2 represents the total photon number,Jz the
photon number difference between the two modes, andJx,y
are the phase difference, or interference, quadrature
stems from this thateiuJz is the relative phase shift operato
and eiuJx is the rotation carried out by a beam splitt
~homo-/heterodyne measurements!. The eigenstates of th
fictitious spin are the two-mode Fock states

u j m&z5una&aunb&b , ~3!

and the respective eigenvalues ofJ2 andJz are given by

j 5
na1nb

2
5

N

2
, ~4!

m5
na2nb

2
. ~5!

The Schwinger representation thus makes use of the ho
morphism from SU~2! onto SO~3!, which allows one to rep-
resent any unitary operation on the two-mode field by a
tation. The general SU~2! transformation

S a1

b1
D 5S cos

b

2
ei /2(a1g) sin

b

2
ei /2(a2g)

2sin
b

2
e2 i /2(a2g) cos

b

2
e2 i /2(a1g)

D S a0

b0
D ,

~6!

wherea, b, andg are the Euler angles, corresponds to t
rotation operatore2 iaJz e2 ibJy e2 igJz (\51). A lossless
beam splitter corresponds to the values

a52g5p/2, b562 arccosAR, ~7!

whereR is the reflectivity of the beam splitter~the transmit-
tivity T is such thatR1T51).

B. Ideal number-phase EPR states

By definition, a maximally entangled two-mode state,
EPR state, is a two-mode quantum state

uEPR&5(
k,l

skluk&au l &b, ~8!

such that any reduced~single-mode! density matrix of this
state Tra,b(uEPR&^EPRu) is proportional to the identity ma
trix, which yields
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An example of the EPR state is the eigenstate, introduced
Luis and Sa´nchez-Soto@26#, of the operators of the photon
number sum and phase difference of two modesa and b.
Heeding the point made by Trifonovet al. @27#, we will call
this state arelative-phaseeigenstate rather than a phas
difference eigenstate, thus recalling that the formal definit
of a two-mode quantum phase difference operator does
coincide with the ~problematic! definition of two single-
mode quantum phase operators@29#. The relative-phase
eigenstate is

uf r
(N)&5

1

AN11
(
n50

N

einfr
(N)

un&auN2n&b , ~10!

wheref r
(N)5f012pr /(N11) is the phase difference,N is

the total photon number,f0 an arbitrary phase origin, an
r P@0,N#. The phase difference is adequately defined w
resolution 1/N, i.e. at the Heisenberg limit. In the Schwing
representation, Eq.~10! becomes

uf r
(2 j )&5

1

A2 j 11
(

m52 j

j

eimfr
(2 j )

u jm&z . ~11!

Trifonov et al. introduced the more general state

u$u (N)%&5
1

AN11
(
n50

N

eiun
(N)

un&auN2n&b, ~12!

which they stated can still be considered a relative-ph
eigenstate, however involved or even arbitrary the real
$un

(N)%n may be with respect ton @27#. Indeed, the whole
basis can always be constructed by applying theN11 phase

shift operatorseifr
(N)Jz to u$u (N)%&, with $un

(N)%n being an ini-
tial relative-phase distribution between the two modesa and
b. Nonetheless, we will show in Sec. III that successful qu
tum teleportation demands full initial knowledge of$un

(N)%n ,
which is also the relative phase of the entanglement betw
Alice and Bob, and the number-phase teleportation proto
becomes very complicated ifun

(N) is not linear inn.
Finally, we recall that maximal entanglement is only a

tained whenN→`.

C. Generation of EPR and quasi-EPR states

The experimental realization of relative-phase eigensta
is an arduous problem. Recently, Trifonovet al. reported the
experimental realization of a relative-phase eigenstate~12!
for N52 @27#. Their astute method uses a nonbalanced be
splitter to create a two-mode state, all of whose amplitu
have equal modulus. This method is not general in the se
that it cannot work perfectly forN.2, as we will see later
~and is immediate from Fig. 2!. However, the use of a beam
splitter to generate EPR or quasi-EPR states stems from q
general arguments indeed.
3-2
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The studies of Heisenberg-limited interferometry@21–25#
have led to a thorough understanding of the subtle quan
optical properties of the beam splitter@30,22–25#. In particu-
lar, a balanced beam splitter swaps the amplitudes and p
properties of the impinging two-mode wave@31#, and can
also be used to entangle nonclassical optical fields@3,32,33#.
As is readily seen in the Schwinger representation, a
anced beam splitter corresponds to ap/2 rotation aroundX
and therefore transforms a state from axisZ ~intensity differ-
ence! to axisY ~phase difference!.

In the case of an EPR state such as Eq.~11!, the phase
difference is squeezed and the intensity difference is a
squeezed. Experimentally, this is achievable by sending
intensity-difference-squeezed state through a beam sp
@15#. To illustrate this, let us examine the beam-splitter o
put of the relative phase state~11!:

uf0
(2 j ) ~b!&5e2 ibJxuf0

(2 j )& ~13!

5
1

A2 j 11
(

m52 j

j

i 2mf m
j ~b!u jm&z , ~14!

where f m
j (b)5(m852 j

j eim8(f0
(2 j )

1p/2) dmm8
j (b), with

dmm8
j (b)5^ jmue2 ibJyu j m8& a rotation matrix element take

real by convention and proportional to a Jacobi polynom
@34#. This state is displayed forf050 in Fig. 1. As expected
the result is a narrow state in photon number~i.e., f m

j →0
very fast asumu→ j ).

It is straightforward to see that sendinguf0
(2 j )(p/2)&

through another, balanced (b56p/2), beam splitter will re-
construct the initial relative phase eigenstateuf0

(2 j )&. ~One
can see thatb→p/2 is necessary to maximal entangleme
since the spread of the state must cover all values of
projections of the spin.! Now, since uf0

(2 j )(p/2)& contains
but a few nonzero amplitudes, a reasonable method for g
erating close approximations of EPR states with a balan
beam splitter is to consider ‘‘quantum filtered’’ input state
which are derived fromuf0

(2 j )(p/2)& by keeping only the

FIG. 1. Modulus of the quantum amplitudes of beam-split
output uf0

(20) (b)& for a relative-phase eigenstate input versus
beam-splitter angleb. N520 photons.
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lowest values ofm ~this could be viewed as a quantum Abb
Porter experiment, with a low-m-pass filter!. These states
are, forN52 j even,

uC j
(1)&5u j 0&z , ~15!

uC j
(3)&5@ f 0

j u j 0&z1 f 1
j u j 1&z1 f 21

j u j 21&z]/C1 , ~16!

and so on, withCm5((m52m
m u f m

j u2)1/2, and are

uC j
(2)&5@ u j 1

2 &z1u j 2 1
2 &z]/A2, ~17!

uC j
(4)&5@ f 1

2

j
u j 1

2 &z1 f
2

1
2

j
u j 2 1

2 &z1 f 3
2

j
u j 3

2 &z1 f
2

3
2

j
u j

2 3
2 &z]/C

3
2 , ~18!

and so on, forN52 j odd. As we will now see, sending thes
states through a beam splitter gives output states closely
sembling EPR states. We call these output states quasi-
states.

We start with the simplest one~15!, which has already
been considered by CMM. We denote the general state
tated by a beam splitter by

u j m8~b!&5e2 ibJxu j m8&z ~19!

5 (
m52 j

j

i m82mdmm8
j

~b!u j m&z . ~20!

Figure 2 displays the modulus of the quantum amplitudes
uC j

(1)(b)& versusb @see Eq.~7!# andm.
One can see thatb→p/2 is still necessary for maxima

entanglement. The very valueb5p/2 leads to a problem
however, because every other amplitude of the state is z
as is well known@30,25,13#. This was recalled by CMM
when they investigated the use of this state as a teleporta
channel and found that, because of this, teleportation fide
was bounded by 50%~to the notable exception of Schro¨-
dinger cat states!. This situation, however, is changed if on
considers an ever-so-slightly imbalanced beam splitter: F

r
e

FIG. 2. Modulus of the quantum amplitudes of the beam-spli
output u10 0 (b)&5uC10

(1)(b)& versus the beam-splitter angleb.
N520 photons.
3-3
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FIG. 3. Modulus and phase of the quantu
amplitudes of uC10

(1)(90o)& ~left! and
uC10

(1)(85.5o)& ~right!. All nonzero amplitudes of
uC10

(1)(90o)& have a phase equal top/2.
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3 dispays the modulus and phase of the coefficients
u10 0(90o)&5uC10

(1)(90o)& and u10 0(85.5o)&
5uC10

(1)(85.5o)&.
Clearly, uC10

(1)(85.5o)& is closer to an EPR state tha
uC10

(1)(90o)&: it has the same spread but much more ev
amplitudes, practically constant for25<m<5, and no ze-
roes at all. The phase distribution is not constant and
simple but this just means that it is a general relative ph
state of the form of Eq.~12!, which is still a legitimate EPR
state in the context we chose for the definition of the relat
phase. In fact,uC10

(1)(85.5o)& is the best quasi-EPR sta
uC10

(1)(b)&, ;b. In general, we find that the anglebQ that
gives the best quasi-EPR state is given by the following p
nomenological formula:

bQ5
p

2 S 12
1

ND , ~21!

which we have tested, to the best of our numerical capa
ties Eq. ~21!, for N 5 200, 2000, and 20000 photons: th
resulting statesuC j

(1)(bQ)& for j 5100, 1000, and 10000, ar
plotted in Fig. 4. Note that the size of the low-m flat region
does scale proportionally toN.

Note that all digits are significant in the beam splitte
parameters of Fig. 4, which points to an interesting situati
Let us assume that on-demand single-photon sources be
a reality ~not an unreasonable asumption!, which would al-
low the production ofuC j

(1)&z in the laboratory. Equation
~21! nevertheless poses a serious experimental constrain
the tolerance of the beam-splitter reflectivityR, because the
required precision onb, i.e., onR, increases withN if one
wants to resolveuC j

(1)(bQ)& from uC j
(1)(p/2)& and its j in-

convenient zeroes. Roughly,DR;Db;1/N. Since a beam
splitter using state-of-the-art optical coatings and polish
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cannot give more thanDR;1026, N cannot exceed 106 pho-
tons in this case. This ‘‘Heisenberg-limit’’-type sensitivit
may be quite general, as hints of the same scaling have
been found in the tolerance to error of entanglement op
tions ~optical pulse times! of N trapped ions@35#. In fact, by
taking a closer look at Fig. 2, one can see that the amplitu
present 1/N-period oscillations versusb. These oscillations
are of significant contrast, with the state amplitudes of
reaching zero. This, therefore, can pose a problem for exp
mentally defininguC j

(1)(b)& as j increases.
This problem disappears, however, as soon as one us

more elaborate input state, such asuC j
(2)& ~17!. Such an input

state could be obtained using stimulated emission from
single atom, starting from auC j

(1)&z state and having the two
beams shine simultaneously and noncollinearly on the
cited atom. One will also want to have fast nonradiative d
cay from the ground state of the transition so as to prev
subsequent absorption, as in laser media. Figure 5 disp
the stateuC j

(2)(b)&.
Even though the 1/N oscillations are still present, they ar

significantly attenuated as there are no zero amplitudes, e
at b5p/2. One can therefore useb5p/2 in this case, which
presents the non-negligible advantage of aflat phasedistri-
bution (3p/4,;m) for this state uC j

(2)(p/2)& @unlike
uC j

(1)(bQ)& in Fig. 3#. This is of great importance for tele
portation, as we will see in the next section. Finally, it
straightforward and unsurprising to show that the mo
elaborate~less low-m-pass filtered! reconstructionsuC j

(3)&
~16! anduC j

(4)& ~18! give even better results: more even am
plitudes at still constant phase. We will, however, restrain
investigations to the two statesuC j

(1)(bQ)& anduC j
(2)(p/2)&,

which are the simplest ones and are also within reason
reach of foreseeable future technology.
3-4
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QUANTUM TELEPORTATION WITH CLOSE-TO-MAXIMAL . . . PHYSICAL REVIEW A 65 052313
III. NUMBER-PHASE QUANTUM TELEPORTATION

In this section we briefly recall the definition of numbe
phase teleportation@13# and extend it to general relative
phase states. We then consider the use of the quasi-
states that were derived above.

A. Ideal entanglement resource

Quantum teleportation relies on a maximally entang
state shared by the sender, Alice, and the receiver, Bob.
entanglement concerns two physical systems,A and B, re-
spectively. Alice is in possession ofA and also of systemT,
whose ‘‘target’’ state is the quantum information she need
transmit. The teleportation process consists, for Alice,

FIG. 4. Modulus of the quantum amplitudes ofuC j
(1)(bQ)& for

N5200, 2000, and 20000 photons~see Fig. 3 forN520). All states
have an almost identical appearance, and are practically indi
guishable from perfect relative-phase eigenstates for2N/5<m
<N/5, approximately.
05231
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making a joint measurement onT andA such that both are
projected onto a maximally entangled state. This preve
Alice from obtaining any quantum information about the ta
get state, which as such is destroyed in the process. In t
said target state is transferred, by ‘‘entanglement transitivi
from T to B, i.e., to Bob, who may then reconstruct the exa
target state onB using the classically transmitted results
Alice’s measurements~which contain no quantum informa
tion whatsoever!. The conceptually difficult part is to figure
out what measurements should be used by Alice to m
mally entangle her two systemsA andT. This question was
answered by Vaidman in connection with the EPR parad
@2#.

In the case of number-phase teleportation, use is mad
the commuting operators number sumN̂T1N̂A and~Hermit-
ian! relative phase@26#

f̂TA5 (
N50

`

(
r 50

N11

uf r
(N)&f r

(N)^f r
(N)u, ~22!

whose measurements project the jointT-A state onto a joint
eigenstate of the total number and the relative phase suc
Eq. ~10!. If the same type of entangled state is shared
tween Alice and Bob, perfect teleportation can in princip
be achieved. Let us consider the general case where the
tial total state is

uc&T^ uf r
(N)&AB[ (

m50

`

cm um&T(
n50

N
einfr

(N)

AN11
un&AuN2n&B .

~23!

We assume Alice’s measurements ofN̂T1N̂A and of f̂TA

yield the respective eigenvaluesq andfs
(q) . The phase dif-

ference measurement should be thought of as a Heisenb
limited interferometric measurement, whose experimen
implementation was proposed and numerically modeled,
the states considered here, in Refs.@23,25#. The joint TA
state is thus left inufs

(q)&TA , and the total state after Alice’s
measurement is

ucM&5eiqfr
(N)

ufs
(q)&TA^ ucB&B , ~24!

in-

FIG. 5. Modulus of the quantum amplitudes of beam-split
outputuC21/2

(2) (b)& versus the beam-splitter angleb. N521 photons.
3-5
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NGOC-KHANH TRAN AND OLIVIER PFISTER PHYSICAL REVIEW A65 052313
ucB&B5C~q!(
k0

q

e2 ik(fr
(N)

1fs
(q)) ck uk1N2q&B , ~25!

where k05max@0,q2N# and C(q)5@(k5k0

q ucku2#21/2. To

exactly recover the target state, Bob must then perform
B, a photon number shift@13# of q2N and a phase shift o
f r

(N)1fs
(q) , i.e.,

ucout&B5ei (fr
(N)

1fs
(q))N̂BPq2NucB&B . ~26!

~In the particular case where Alice’s measurement results
q5N andfs

(q)52f r
(N) , Bob does not have to do anything!

One can see from this that the phase distribution of the in
entanglement resource has to be corrected for, along
Alice’s measurement result.If this distribution is unknown or
too complicated to correct, teleportation will fail. This cor-
rection can also be made by Alice, by simply shifting h
phase operator, i.e., using

e2 ifr
(N)Jzf̂TAeifr

(N)Jz ~27!

instead off̂TA . @Jz5(N̂T2N̂A)/2 here.#
Note that this requirement that the entanglement phas

perfectly known is a very general one and not at all spec
to our particular choice of the optical phase variable for
teleportation protocol. This was pointed out by van Enk
Ref. @36#.

In light of what we have already discussed, it is clear t
a state such asuC j

(2)(p/2)&, which has a flat phase distribu

tion einfr
(N)

5ei3p/4, is perfectly suited for this teleportatio
protocol. It is, however, interesting to investigate the use
the more exotic stateuC j

(1)(bQ)& in this case. The phas
distribution is neither flat nor simple~Fig. 3!, one phenom-

enological description of it beingeinfr
(N)

5ein2p/2. We are
thus in the case of a general relative phase stateu$u (N)%&
given by Eq.~12!. If the initial entanglement is given by Eq
~12!,

uc&T^ u$u (N)%&AB , ~28!

then the phase difference operator is not given by Eq.~22!
but by @27#

f̂TA
u 5 (

N50

`

(
r 50

N11

eifr
(N)Jzu$u (N)%&f r

(N)^$u (N)%ue2 ifr
(N)Jz,

~29!

and the postmeasurement total state is

ucM&5ei (q/2)fs
(q)

ufs
(q)&TA^ ucB&B , ~30!

ucB&B5C~q! (
k5k0

q

eiuq2k
(N)

2uk
(N)

e2 ikfs
(q)

ckuk1N2q&B ,

~31!

which shows that Bob needs more than a mere phase sh
properly reconstructuc&: with $un

(N)%n fully known, he needs
the unitary transformationU $u(N)% that transformsu$u (N)%&
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into a ‘‘flat-phase’’ state for whichun
(N)5f0

(N)5 cst, ;n.
This transformation may be single-mode and applied by B
as U $u(N)%

B ucB&B5ucout&B , or two-mode and applied by Al-

ice, by measuringU $u(N)%
A f̂TAU $u(N)%

A† . In the aforementioned
case ofuC j

(1)(bQ)&, one possibility is

U $u%
B 5 ei (21)q(p/2)N̂B

2
, ~32!

which can be interpreted as an intensity-dependent ph
shift and might therefore be realizable with a Kerr nonline
ity.

It is somewhat puzzling that this additional step is need
if u$u (N)%& may indeed be considered as a legitimate relat
phase eigenstate, since it is used in the corresponding
tive phase measurement of Eq.~29!. Our conclusion is that
the definition~29! of the general relative-phase operator
not valid in the context of quantum teleportation, possib
because the full EPR nature of the eigenstate of Eq.~12! is
used. Indeed, if one only cares about measuring the ph
difference between the two modes, any type of initial relat
phase distribution$un

(N)%n will give the same result, as illus
trated in Ref.@27#. This obviously ceases to be true whe
applying in a teleportation operation, where the compl
nature of the entangled state must be known. In other wo
yet, even though the whole relative-phase eigenbasis —
hence the operator — may be generally defined based u
any general stateu$u (N)%& with arbitrary phase distribution
$un

(N)%n , it does in fact matter for teleportation thatU $u(N)%
corresponds to a feasible physical measurement, thereby
iting the generality of relative phase states usable for telep
tation.

B. Quasi-EPR resource

We now turn to the use of quasi-EPR states as the
tanglement resource, and show how arbitrary coherent
Schrödinger cat states can be successfully teleported.
evaluation of teleportation performance will contain no a
sessment of decoherence and will be based on the pure-
fidelity

F5 z^coutuc& z2. ~33!

The entanglement resource is now a quasi-EPR state,

uQEPR&AB5 (
n50

N

sn
N un&AuN2n&B , ~34!

where(n50
N usn

Nu251. As announced before, we only treat th
cases ofuC j

(1)(bQ)& and uC j
(2)(p/2)&. Their respective de-

compositions in terms of Eq.~34! are found using Eqs.~3!–
~5! and ~19!, and their amplitudes are, respectively,

sn
N5 i 2n1(N/2) dn2(N/2), 0

N/2 ~bQ!, ~35!
3-6
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sn
N5

1

A2
i 2n1(N/2) Fdn2(N/2), (1/2)

N/2 S p

2 D
2 idn2(N/2), 21/2

N/2 S p

2 D G . ~36!

The postmeasurement total state is

ucM&5ufs
(q)&TA^ ucB&B , ~37!

ucB&B5C~q! (
k5k0

q

e2 ikfs
(q)

ck sq2k
N uk1N2q&B , ~38!

whereC(q)5((k5k0

q ucku2usn
Nu2)21/2. This yields

ucout&B5C~q! (
k5k0

q

ck sq2k
N uk&B , ~39!

and the fidelity is

F~q!5

U (
k5k0

q

ucku2sq2k
N U2

(
k5k0

q

ucku2usq2k
N u2

. ~40!

FIG. 6. Teleportation fidelity of ana53 coherent state, using
the quasi-EPR resourceuC21/2

(2) (b)& versus the beam-splitter angleb
and the number-sum measurement resultq. N521 photons.

FIG. 7. Teleportation fidelity of ana53 cat state, using the
quasi-EPR resourceuC21/2

(2) (b)&, versus the beam-splitter angleb
and the number-sum measurement resultq. N521 photons.
05231
Before we plotF(q) for the two quasi-EPR states, we mu
address the question of the dependence of the fidelity on
measured valueq of the number sum: this implies cond
tional teleportation even for an ideal relative-phase st
(sn

N5const ;N,n), which should not be.
Equation~40! has an upper bound, which can be found

using the Schwartz inequality:

U (
k5k0

q

ucku2sq2k
N u2< (

k5k0

q

ucku2 (
k5k0

q

ucku2usq2k
N U2

. ~41!

The fidelity is thus bounded by

F~q!< (
k5k0

q

ucku2. ~42!

The physical meaning of this Schwartz inequality thus is
following: if k050 ~i.e., q<N, which is automatic forN
→`) andq is very large compared to the spread of the tar
state~denoted bykmax, such thatck.kmax

50!, then the in-
equality ~42! becomes

F~q!< (
k50

kmax

ucku251, ~43!

FIG. 8. Teleportation fidelity of ana53 coherent state, using
the quasi-EPR resourceuC10

(1)(b)&, versus the beam-splitter angleb
and the number-sum measurement resultq. N520 photons.

FIG. 9. Teleportation fidelity of ana53 cat state, using the
quasi-EPR resourceuC10

(1)(b)&, versus the beam-splitter angleb
and the number-sum measurement resultq. N520 photons.
3-7
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which corresponds to the fidelity of the ideal EPR resour
All of this is in fact ensured by maximal entanglementN
→`, and a finitekmax. When this is fulfilled, the probability
that q,kmax becomes negligible and the teleportation b
comes unconditional. Otherwise, one can have severe fid
limitations, as in the worst caseN,q,kmax:

F~q!< (
k5q2N.0

q,kmax

ucku2,1, ~44!

where the sum over the target state probability becomes t
cated. Besides being lower, the fidelity will also depe
strongly on the value ofq ~conditional teleportation!.

In our computations,N is limited to a few tens of photon
@calculating the stateuC10000

(1) (bQ)& as in Fig. 4 is a lighter
computational load than that of calculatinguC100

(2)(p/2)&#,
making it difficult to approachN→`. Therefore, the fidelity
displayed in our figures has a remaining dependence on
value ofq and the illusion of conditionality. The argumen
above should have, however, convinced the reader that
is not the true physical situation for number-phase telepo
tion, which can be truly unconditional. As far as our nume
cal results are concerned, it is simple to see that, for a co
ent target stateua& (a real!, the high-fidelity region is given
by qP@kmax,N2kmin# whereN@kmax, i.e., qP@a21a,N
2a21a#.

FIG. 10. Cross section of Fig. 8 forq519. The peak value is
99.3% atb5bQ585.5o (0.5o steps!. Note thatb590o gives the
classical fidelity valueF549.8%, consistently with the results o
CMM.
d

H.

05231
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As mentioned earlier, we considered two different targ
states, a simple coherent stateua&T and a ‘‘Schro¨dinger cat’’
state, the macroscopic, definitely nonclassical superposit

C~ ua&T1u2a&T)5C(
n50

`

@11~21!n#
an

An!
un&T , ~45!

whereC5(212e22uau2)21/2. We calculated the teleportion
fidelity F(q,b) for both these states witha53, using the
two quasi-EPR statesuC j

(2)(b)& and uC j
(1)(b)& @assuming

the initial-entanglement-phase correction~32! is successfully
applied by Bob# for the respective entanglement resourc
Results are plotted in Figs. 6–9.

Once again, the limited spread inq of the high fidelity
region is only due to the limitations of our computation. H
we been able to perform the simulations with a largerN, this
effect would have disappeared. These teleportation proto
are unconditional. What is essential is that, in all cases,
obtain F.100%. This occurs forb5p/2 in Figs. 6 and 7
and for b5bQ ~see Fig. 10! in Figs. 8 and 9, thereby con
firming our analysis that quasi-EPR states can be effic
teleportation resources.

IV. CONCLUSION

We have demonstrated that efficient quantum telepo
tion is indeed possible with close-to-maximally entangl
states. We chose the simplest quasi-EPR states, which w
be straightforward to generate should on-demand sin
photon sources become an experimental reality. Note, h
ever, that the same formalism applies equally well to seco
quantized bosons in general, which opens possibilities for
use of trapped ions or Bose-Einstein condensates. We
investigated the use of generalized relative-phase state
quantum teleportation and showed that these states lea
serious complications if the basis ‘‘generator’’u$u%& has a
more complicated phase distribution than a simple phase
set. This therefore raises a question about the precise ph
cal significance of the generalized relative-phase oper
~29! of Ref. @27#.
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