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Abstract

It is shown that the deconstruction of[SU(2)×U(1)]N into [SU(2)×U(1)] is capable of providing
all necessary ingredients to completely implement the complex CKM mixing of quark flavors
hierarchical structure of quark masses originates from the difference in the deconstructed chir
mode distributions in theory space, while the CP-violating phase comes from the genuinely co
vacuum expectation value of link fields. The mixing is constructed in a specific model to s
experimental bounds on quarks’ masses and CP violation.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Dimensional deconstruction[1,2] is a very interesting approach to dynamically gene
the effects of extra dimensions departing from the four-dimensional (4D) renormal
physics at ultraviolet scale. That is, apart from having the viability in the sense of r
malizability, whatever amusing mechanisms being dynamically raised by the virtue o
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dimensions (ED) now can also be easily arranged to rise dynamically in a pure 4D f
work. In this paper we look specifically into two such important mechanisms of
dimension theories, namely the localization of matter fields in the bulk[3–5] and the dy-
namical breaking of CP symmetry by ED Wilson line[6–9]. Ultimately, the hybrid of
these two mechanisms is just the well-known complex mixing of fermion flavors. And
conceptually interesting to note that dimensional deconstruction (DD) nicely encomp
both of these issues. In other words, complete Cabibbo–Kobayashi–Maskawa (CKM
ing can be generated naturally via dimensional deconstruction.

With the presence of extra dimensions, one has a new room to localize the matte
differently along the transverse directions as in the so-called split fermion scenario
ous overlaps of fermions of different flavors then induce various fermion masses ob
in nature (see, e.g.,[10–12]). Amazingly, the deconstruction interaction is also able to p
duce similar localization effects[13]. Indeed, after the spontaneous breaking of link fie
fermions get an extra contribution to their masses via the Higgs mechanism. Fermion
reorganize themselves into mass sequences and the lightest mass eigenstate of th
ers exposes some interesting “localization” pattern in the theory space (also referre
deconstruction group index space). We will first work out the analytical expression
confirm the localization of these zero modes in a rather generic deconstruction set-u
next question to raise is how to make these light modes chiral. Imposing some k
chiral boundary conditions[2] is the answer again coming from the ED lessons. The
however one more subtle point to be mentioned here. If one truly wishes to relate t
scenario to the dimensional deconstruction, one needs to latticize the extra dimens
host the deconstruction group. There comes the lattice theory’s issue of fermion do
and its standard remedy, such as adding to the Lagrangian a Wilson term[14] would re-
move half of original chiral degrees of freedom. This is the reason why most of pre
works addressing the fermionic mixing in deconstructed picture (e.g.,[2,13,15]) usually
start out with only Weyl spinors. In the current work, we adopt a different and some
more general 4D deconstruction approach[16] where no extra dimension is actually i
voked. As a result the fermions to begin with keep a standard 4-component Dirac
representation.

In any deconstruction set-up, the link fields transform non-trivially under at leas
different gauge groups. This implies a complex vacuum expectation value (VEV) for
fields, whose phase would not be rotated away in general. After the deconstruction p
this phase is carried over into the complex value of wave functions and wave fun
overlaps of fermions. In turn, the induced complex-valued mass matrices can re
required CP-violating phase in the well-known KM mechanism. In contrast, we note
the generation of complex mass matrices within the split fermion scenario is a non-
problem and requires rather sophisticated techniques to solve[17,18]. Interestingly, the
above CP violation induction via deconstruction can also be visualized in extra dimen
view point. Indeed, because of having the same symmetry transformation property, D
field can be identified with the Wilson line pointing along a latticized transverse dire
(Appendix B), and the latter then can naturally acquire a complex VEV in the genera
Hosotani’s mechanism[6–9] of dynamical symmetry breaking. Apparently, the source
CP violation in this approach comes from the complex effective Yukawa couplings so

be classified as hard CP violation. Nevertheless, those couplings acquire complex values
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after the spontaneous breaking of the DD link fields. In that sense this CP violation p
could also be considered soft and dynamical.

This paper is presented in the following order. In Section2.1 we give the zero mas
eigenstate of fermions obtained in the deconstructed picture, in Section2.2 the result-
ing expression of mass matrix elements, and in Section2.3 the symmetry breaking o
[SU(2) × U(1)]N into [SU(2) × U(1)]. In Section3 we present the numerical fit for qua
mass spectrum and CKM matrix in a model where each “standard model” Higgs fi
chosen to transform under only a single deconstruction subgroup. The conclusion an
ments on numerical results is given in Section4. Appendix Aprovides a detailed derivatio
of zero mode wave functions in 4D deconstruction using combinatoric techniques.Appen-
dix B outlines intuitive arguments on the complexity of link field inspired by lattice mod
Appendix Cpresents analytical expressions for wave function overlaps used in the
mination of mass matrix elements. Finally,Appendix Dgives referencing values of ke
physical quantities that have been used in the search algorithm (Table 1), and numerica
solution of our models’ parameters (Table 2).

2. Deconstruction and quark mass matrix

In this section we describe how the mixing of quark flavors arises in the DD pic
But we first briefly recall the basic idea of the dimensional deconstruction applied to
single quark generation. The family replication will be restored in the later sections.

2.1. Zero-mode fermion

We begin with N copies of gauge group[SU(2) × U(1)]n where n = 1, . . . ,N .
To each group[SU(2) × U(1)]n we associate aSU(2)n-doubletQn, and twoSU(2)n-
singletsUn, Dn. These fields transform non-trivially only under their corresponding gr
[SU(2)×U(1)]n as(2, qQ), (1, qU ), (1, qD) respectively, withq ’s denotingU(1)-charges.
Finally, we use 3(N − 1) scalarsφ

Q
n−1,n, φU

n−1,n, φD
n−1,n transforming respectively a

(2, qQ|2,−qQ), (1, qU |1,−qU ), (1, qD|1,−qD) under [SU(2) × U(1)]n−1 × [SU(2) ×
U(1)]n to “link” fermions of the same type. Because of this, scalarsφ’s are also referred
to as link fields hereafter. For the simplicity of the model, we assume a symmetry f
Lagrangian under the permutation of group indexn.

The
∏N

n=1[SU(2) × U(1)]n gauge-invariant Lagrangian of the fermionic sector is

L=
(

N∑
n=1

Q̄ni/DnQn +
N−1∑
n=1

Q̄nφ
Q
n,n+1Qn+1 − MQ

N∑
n=1

Q̄nQn

)

(1)+ (Q ↔ U) + (Q ↔ D),

where/Dn denotes the covariant derivative associated with gauge group[SU(2) × U(1)]n,
andMQ,MU,MD are the bare masses of fermions. Ultimately, we are interested in ac
ing chiral fermions of standard model (SM) at low energy scale. To this aim we impos
following chiral boundary conditions (CBC) on fermion fields[2]
Q1R = QNR = 0, φ
Q
N−1,NQN,L = VQQN−1,L,
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U1L = UNL = 0, φU
N−1,NUN,R = VUUN−1,R,

(2)D1L = DNL = 0, φD
N−1,NDN,R = VDDN−1,R.

We note that those conditions are in agreement with the gauge transformation prop
fields, e.g.,φQ

N−1,NQN,L andQN−1,L transform identically under the underlying gau
groups. Essentially, these boundary conditions render one more left-handed degree
dom over the right-handed forQ field, and the contrary holds forU andD fields. The
actual calculation will show that the zero-mode ofQ field indeed is left-handed while fo
U,D it is right-handed. When the link fieldsφQ,U,D assume VEV proportional toVQ,U,D ,
above CBC become the very reminiscence of Neumann and Dirichlet boundary cond

In the deconstruction scenario, after the spontaneous symmetry breaking (SSB) t
fields acquire an uniform VEVVQ,U,D respectively, independent of site indexn (in ac-
cordance with the assumed permutation symmetry), and the fermions obtain new
structure. Using the CBC(2), the fermion mass term can be written in the chiral basis

(Q̄2R, . . . , Q̄N−1,R)[MQ]

 Q1L

...

QN−1,L


 + (Q̄1L, . . . , Q̄N−1,L)[MQ]†


 Q2R

...

QN−1,R



(3)+ (QR,L ↔ UL,R) + (QR,L ↔ DL,R),

where the matrix[MQ] of dimension(N − 2) × (N − 1) is

(4)

[MQ](N−2)×(N−1) =




−V ∗
Q MQ −VQ 0

0 −V ∗
Q MQ −VQ

0 0 −V ∗
Q MQ

.. .

MQ −VQ

−V ∗
Q MQ − VQ




.

By interchangingQR,L ↔ UL,R , QR,L ↔ DL,R , the matrices[MU ], [MD] of dimension
(N − 1) × (N − 2) can be analogously found.

By coupling the following Dirac equations for chiral fermion sets{QR} ≡ (Q2R, . . . ,

QN−1,R)T and{QL} ≡ (Q1L, . . . ,QN−1,L)T

(5)i/∂{QR} − [MQ]{QL} = 0, i/∂{QL} − [MQ]†{QR} = 0,

we see that[M†
QMQ] is the squared-mass matrix for the left-handed componentsQL and

[MQM
†
Q] for the right-handedQR . Since at low energy, we are interested only in the ch
zero modes of fermions, we will work only with[M†
QMQ], [MUM

†
U ], [MDM

†
D] in what
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[
M

†
QMQ

]=




|VQ|2 −MQVQ V 2
Q

0

−MQV ∗
Q

M2
Q

+
|VQ|2

−2MQVQ V 2
Q

(V ∗
Q

)2 −2MQV ∗
Q

M2
Q

+
2|VQ|2

−2MQVQ

0 (V ∗
Q

)2 −2MQV ∗
Q

M2
Q

+
2|VQ|2

.
.
.

−2MQV ∗
Q

M2
Q

+
2|VQ|2

−2MQVQ V 2
Q

(V ∗
Q

)2 −2MQV ∗
Q

M2
Q

+
2|VQ|2

−2MQVQ+
|VQ|2

0 (V ∗
Q

)2
−2MQV ∗

Q
+

(V ∗
Q

)2

M2
Q

+2|VQ|2−
(VQ+V ∗

Q
)MQ




,

and similar expressions hold for[MUM
†
U ], [MDM

†
D]. The quantitative derivation of th

zero-eigenstates, which are identified with the SM chiral fermion, is presented inAppen-
dix A. In this section we just concentrate on some qualitative discussion. In gene
diagonalization of matrices(6) leads to the transformation between gauge eigenstatesQnL

and mass eigenstates̃QmL

(7)QnL = [UQ]nmQ̃mL, Q̃nL = [UQ]∗mnQmL,

where the matrix[UQ] diagonalizes[M†
QMQ]

(8)
[
M

†
QMQ

]
diag= [UQ]†[M†

QMQ

][UQ].
The key observation, which will be analyzed in more details inAppendix B, is that VEV
VQ,U,D are generically complex and[UQ,U,D] are truly unitary (i.e., not just orthogona
This in turn gives non-trivial phases to zero-mode fermionsQ̃0L, Ũ0L, D̃0L in Eq. (7) and
after the SM spontaneous symmetry breaking the obtained mass matrices are co
Further, the explicit solution of zero modẽQ0L (and Ũ0R , D̃0R) in the mass eigenbas
exhibits a very interesting “localization” pattern in the group index spacen (seeAppen-
dix A). This in turn can serve to generate the mass hierarchy among fermion fami
a manner similar to that of ED split fermion scenario (see, e.g.,[12,18]). Thus we see
that dimensional deconstruction indeed provides all necessary ingredients to cons
complete (complex) CKM structure of fermion family mixing.

2.2. Complex mass matrix

In order to give mass to the above chiral zero-mode of fermions, we introduce
doublet fields just as in the SM. In the simplest and most evident scenario (see[15]),
there is one doublet HiggsHn transforming as(2, qQ − qD ≡ qU − qQ) under each

[SU(2) × U(1)]n group. We also implement the replication of families by incorporating
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family indicesi, j = 1, . . . ,3. Another scenario to generate the (vector-like) fermion m
hierarchy by assuming various link fields to connect arbitrary sites of the latticized
dimension has been proposed in[19].

The gauge-invariant Yukawa terms read

(9)κU
ij

N∑
n=1

Q̄(i)
n iσ2H

∗
n U

(j)
n + κD

ij

N∑
n=1

Q̄(i)
n HnD

(j)
n + H.c.

In order to extract the terms involving zero modes, which are the only terms relevant
energy limit, we rewrite(9) in the mass eigenbasis. However, this procedure depend
plicitly on the specific CBCs being imposed on each of the fieldsQ, U , D. To be generic
let us consider the following configuration. We assume the “localization” of zero m
Q̃0L, Ũ0R andD̃0R to be atn = 1, n = 1 andn = N , respectively. To achieve this localiz
tion pattern, we impose the following CBCs on these fields (see Eq.(2) andAppendix A,
Eq.(A.22))

Q
(i)
1R = Q

(i)
NR = 0, φ

(i)Q
N−1,NQ

(i)
NL = V

(i)
Q Q

(i)
N−1L,

U
(j)

1L = U
(j)
NL = 0, φ

(j)U

N−1,NU
(j)
NR = V

(j)
U U

(j)

N−1R,

(10)D
(k)
1L = D

(k)
NL = 0, φ

(k)D
1,2

†
D

(k)
1R = V

(k)∗
D D

(k)
2R .

Because of these boundary conditions, zero modesQ̃0L, Ũ0R andD̃0R would be localized
atn = 1, n = 1 andn = N respectively, this also means that the first term of Eq.(9) would
represent the overlap between 2 wave function localized at the same siten = 1, while the
second term represents the overlap between wave functions localized atn = 1 andn = N .
Using(10)to eliminate the dependent components and after the SM spontaneous sym
breaking〈Hn〉 = (0, v/

√
2)T uniformly for all n’s, we can rewrite the Yukawa term(9) as

κU
ij

v√
2

3∑
i,j=1

[
Q̄

(i)
1LU

(j)

1R + V
(i)
Q

φ
(i)Q
N−1,N

V
(j)
U

φ
(j)U

N−1,N

Q̄
(i)
N−1LU

(j)

N−1R

+
N−1∑
n=2

(
Q̄

(i)
nLU

(j)
nR + Q̄

(i)
nRU

(j)
nL

)]

+ κD
ij

v√
2

3∑
i,k=1

[
V

(k)∗
D

φ
(k)D
1,2

†
Q̄

(i)
1LD

(k)
2R + V

(i)
Q

φ
(i)Q
N−1,N

Q̄
(i)
N−1LD

(k)
NR

(11)+
N−1∑
n=2

(
Q̄

(i)
nLD

(k)
nR + Q̄

(i)
nRD

(k)
nL

)]
.

After going to the mass eigenbasis by the virtue of transformation of the type(7), keeping
only zero-mode terms and together with the assumption of universality for the Yu
couplings in the up and down sectors, we obtain the following effective mass terms

(12)
3∑ ¯̃

Q
(i)
0LMu

ij Ũ
(j)

0R +
3∑ ¯̃

Q
(i)
0LMd

ikD̃
(k)
0R,
i,j=1 i,k=1
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(13)

Mu
ij = κU

v√
2

[(
N−2∑
n=1

[
U (i)

Q

]∗
n,0

[
U (j)

U

]
n,0

)

+
(

1+ V
(i)
Q

φ
(i)Q
N−1,N

V
(j)
U

φ
(j)U

N−1,N

)[
U (i)

Q

]∗
N−1,0

[
U (j)

U

]
N−1,0

]
,

(14)

Md
ik = κD

v√
2

[(
V

(k)∗
D

φ
(k)D
1,2

†

[
U (i)

Q

]∗
1,0 + [

U (i)
Q

]∗
2,0

)[
U (k)

D

]
2,0 +

(
N−2∑
n=3

[
U (i)

Q

]∗
n,0

[
U (k)

D

]
n,0

)

+ [
U (i)

Q

]∗
N−1,0

([
U (k)

D

]
N−1,0 + V

(i)
Q

φ
(i)Q
N−1,N

[
U (k)

D

]
N,0

)]
.

Because all[UQ], [UU ], [UD] are unitary, the mass matricesMu, Md are generally com
plex. Thus in this simplest deconstruction approach, we might better understand t
namical origin of CP-violation phase in the SM mass matrices. We also note that(13), (14)
represent the specific case whereQ̃0L, Ũ0R and D̃0R are localized atn = 1, n = 1 and
n = N , respectively. All other localization configurations can be similarly found. Fur
when we replace link fieldsφ’s in (13), (14) by their VEVs following the deconstruction
these mass matrix elements will look much simpler (see(27), (28)).

Before moving on to give explicit expressions of these complex-valued mass ma
in term of zero mode wave functions (Appendix A) and perform the numerical fit, let u
briefly turn to the breaking pattern of product group

∏N
n=1[SU(2) × U(1)]n.

2.3. Deconstructing [SU(2) × U(1)]N

For the sake of completeness, in this section we will describe the breaking of[SU(2) ×
U(1)]N into the SM[SU(2) × U(1)] gauge group by giving uniform VEVs to link field
The transformation and charge structure of fermions and scalar link fields have be
fined in the beginning of previous section. To identify the unbroken symmetries follo
the deconstruction, we look at the covariant derivative and kinetic terms of scalars

(15)DµφU
n,n+1 = ∂µφU

n,n+1 − iqU

g′
0

2
BnµφU

n,n+1 + iqU

g′
0

2
Bn+1µφU

n,n+1,

(16)DµφD
n,n+1 = ∂µφD

n,n+1 − iqD

g′
0

2
BnµφD

n,n+1 + iqD

g′
0

2
Bn+1µφD

n,n+1,

whereBn is the gauge boson associated withU(1)n, while g′
0 is the common gauge cou

pling for all U(1)’s. For Abelian groups, the opposite signs of the last two terms in(15)
(and also in(16)) originate from the opposite charges ofφU

n,n+1 (andφD
n,n+1) underU(1)n

andU(1)n+1 (so that terms likeŪnφ
U
n,n+1Un are gauge-invariant).

For non-Abelian groups, the similar sign reversing will hold for terms in the exp
sion of covariant derivatives (see Eq.(21)), the nature of which also has its root in t

gauge invariance of the theory. Indeed, under the Yang–MillsSU(2)n × SU(2)n+1 gauge
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ms

ll

s
terms

eak-
transformation (note thatφQ
n,n+1 is a 2× 2-matrix)

(17)φ
Q
n,n+1 → Tnφ

Q
n,n+1T

†
n+1,

(18)Qn → TnQn, Qn+1 → Tn+1Qn+1,

(19)

[
	Anµ

	τ
2

]
→ Tn

[
	Anµ

	τ
2

]
T †

n − i

g0
(∂µTn)T

†
n ,

(20)

[
	An+1µ

	τ
2

]
→ Tn+1

[
	An+1µ

	τ
2

]
T

†
n+1 − i

g0
(∂µTn+1)T

†
n+1.

The covariant derivative ofφQ
n,n+1 must be formulated as follows (so that it transfor

exactly likeφ
Q
n,n+1 in (17))

Dµφ
Q
n,n+1 = ∂µφ

Q
n,n+1 −

(
iqQ

g′
0

2
Bnµφ

Q
n,n+1 + ig0 	Anµ

	τ
2
φ

Q
n,n+1

)

(21)+
(

iqQ

g′
0

2
Bn+1µφ

Q
n,n+1 + ig0φ

Q
n,n+1

	Anµ

	τ
2

)
,

where 	An andTn are respectively the gauge bosons and some 2× 2-special unitary matrix
characterizing theSU(2)n transformation, whileg0 is the common gauge coupling for a
SU(2)’s.

After the deconstructionφU,D
n,n+1 → VU,D , φ

Q
n,n+1 → VQ · 12×2, the mass term

for gauge bosons are generated. Specifically, we obtain as parts of kinetic
(DµφU

n,n+1)
†(DµφU

n,n+1), (DµφD
n,n+1)

†(DµφD
n,n+1), Tr[(Dµφ

Q
n,n+1)

†(Dµφ
Q
n,n+1)] the fol-

lowing gauge bosons squared mass matrices

[
M2

B

] = λB




1 −1
−1 2

. . .

2 −1
−1 1


 ,

(22)
[
M2

	A
] = λ 	A




1 −1
−1 2

. . .

2 −1
−1 1


 ,

where, after restoring the family replication index (i = 1,2,3),

(23)λB =
3∑
1

g0
′2(q2

U

∣∣V (i)
U

∣∣2 + q2
D

∣∣V (i)
D

∣∣2 + q2
Q

∣∣V (i)
Q

∣∣2), λ 	A =
3∑
1

g2
0

∣∣V (i)
Q

∣∣2.
Both matrices in(22)have a “flat” zero eigenstate. This indeed indicates the uniform br

ing of [SU(2)×U(1)]N into the diagonal (SM) group[SU(2)×U(1)], whose gauge bosons
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(24)B̃µ = 1√
N

N∑
n=1

Bnµ,
	̃

Aµ = 1√
N

N∑
n=1

	Anµ.

In Eq. (23) it is also shown that the pattern of symmetry breaking is not spoiled by fa
replication as long as chargesqU (andqD , qQ ) are independent of the site indexn under a

presumed permutation symmetry (just likeV
(i)
U,D,Q). Finally, by extracting the interactio

between fermions and massless gauge bosons from fermion kinetic terms in(1) one can
see that the couplings of the unbroken group scale asg′ = g′

0/
√

N andg = g0/
√

N , while
the charge structure (of fermions in mass eigenbasis) under this diagonal group r
intact.

3. Fitting the model’s parameters

3.1. Model, parameters and numerical method

In the previous section we have outlined the process diagonalizing the square
matrix (6). The complete diagonalization process is complicated, but as we are conc
only with the zero eigenvalue problem, the computation can be done analytically
general term (seeAppendix A). Since[UQ] diagonalizes[M†

QMQ] (8), the zero eigenstat

of [M†
QMQ] is just the first column of[UQ], i.e., in the notation ofAppendix A

(25)
[
U (i)

Q

]
n,0 = x

(i)
Qn,

and similarly

(26)
[
U (j)

U

]
n,0 = x

(j)
Un,

[
U (k)

D

]
n,0 = y

(k)
Dn,

wherexn’s are given in(A.20) (corresponding to a zero mode localized at the end p
n = 1) andyn’s in (A.24) (corresponding to a zero mode localized at the end pointn = N ).

After the spontaneous symmetry breaking, the link fields acquire an uniform
VQ,U,D respectively (independent of site indexn). In term ofxn’s andyn’s, the SM mass
matrices(13), (14) for up and down quark sectors become

(27)Mu
ij = κU

v√
2

[(
N−1∑
n=1

x
(i)∗
Qn x

(j)
Un

)
+ x

(i)∗
QN−1x

(j)

UN−1

]
,

(28)Md
ik = κD

v√
2

[
x

(i)∗
Q1 y

(k)
D2 +

(
N−1∑
n=2

x
(i)∗
Qn y

(k)
Dn

)
+ x

(i)∗
QN−1y

(k)
DN

]
,

wherexn’s, yn’s are given in(A.20), (A.24), respectively. The analytical forms of(27),
(28) in term of model’s parameters are worked out inAppendix C, Eqs.(C.1), (C.2).

Again, let us remind ourselves that(27) represents the overlap between two wave fu

tions localized at the same siten = 1 while (28) represents the overlap between one wave
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function localized atn = 1 and the other atn = N . The model under consideration co
sists of 20 real parameters (seeTable 2andAppendix B): 3 complex VEVV ’s for each
complete quark generation(Q,U,D)i (i = 1,2 or 3), and 2 real “dimensionful” Yukaw
couplingsκUv/

√
2, κDv/

√
2. We choose to fixN = 10 throughout.

The numerical approach to fit the parameters consists in minimizing a positive
tion which gets a zero value when all the predicted quantities are in the correspo
experimental ranges[18]. The minimization procedure is based on the simulated anne
method, which seems working better than other minimization approaches when the
meter space becomes larger[20,21]. The input referencing physical quantities are given
Table 1of Appendix D.

We consider eight different cases, which correspond to all the eight possible w
localizing the left and right components. The eight different cases are the following:

(1) Q, U andD localized inn = 1 denoted as(QUD1);
(2) Q andU localized inn = 1, D localized inn = N denoted as(QU1DN);
(3) Q andD localized inn = 1, U localized inn = N denoted as(QD1UN);
(4) Q localized inn = 1, U andD localized inn = N denoted as(Q1UDN);
(5) Q, U andD localized inn = N denoted as(QUDN);
(6) D localized inn = 1, Q andU localized inn = N denoted as(D1QUN);
(7) U localized inn = 1, Q andD localized inn = N denoted as(U1QDN);
(8) U andD localized inn = 1, Q localized inn = N denoted as(UD1QN).

We specially note that, due to the mirror complexity between CBCs(2) and(A.22), the
mass matrices obtained in the cases (1) and (5), cases (2) and (6), cases (3) and (
(4) and (8), are complex conjugate pairwise. In the result, all eight cases are inequiv

3.2. Numerical results

In the following we present the characteristically important numerical results fo
four cases out the eight mentioned above, for which we were able to find solution
cases are referred to in the above order. For each case we give one particular, but
numerical complete set of the 20 defining parameters (Table 2), the quark mass matrice
and quark mass spectra, the CKM matrix and the CP parameters. Complex phases a
sured in radiant, andN = 10 for all cases. The masses are given in GeV and are eval
at theMZ scale. For the sake of visualization, we also present graphically the compr
sive solutions of the quark wave function profiles in the theory space (Fig. 1), the mass
spectrum (Fig. 2), the CKM matrix (Fig. 3) and theρ̄–η̄ CP parameters (Fig. 4) for the
case of all fieldsQ,U andD localized at the same siten = 1.

• Case (1):Q, U andD localized inn = 1.

(29)M(QUD1)
u = 78.4 GeV

(0.925e−0.558i 0.923e−0.501i 0.951e−0.570i

0.027e2.009i 0.027e2.046i 0.029e2.006i

)
,

0.948e0.306i 0.942e0.367i 0.973e0.280i
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tions
in
Fig. 1. Profiles of the absolute value of normalized wave functions|x(i)
Qn

|, |x(i)
Un

| and |x(i)
Dn

| in the theory space

(N = 10) for the case withQ, U andD localized atn = 1. |x(2)
Qn

| with a value ofα 
 1 is less localized.

m(QUD1)
u = 0.0021 GeV, m(QUD1)

c = 0.702 GeV,

(30)m
(QUD1)
t = 181.1 GeV,

(31)M
(QUD1)
d = 1.35 GeV

( 0.909e1.490i 0.782e−2.072i 0.960e0.992i

0.030e−2.649i 0.048e0.930i 0.032e−3.025i

0.848e2.339i 0.799e−1.353i 0.918e1.838i

)
,

m
(QUD1)
d = 0.0045 GeV, m(QUD1)

s = 0.106 GeV,

(32)m
(QUD1)
b = 2.89 GeV.

In Eqs.(29), (31)the mass matrices are written in a form that better shows devia
from the democratic structure. In Eq.(33) we give the expression for the CKM matrix,
Eq.(34) the values for the CP parametersρ̄ andη̄.

(33)V
(QUD1)
CKM =

(0.975− 0.009i −0.151− 0160i −0.001− 0.003i
0.015+ 0.219i −0.669+ 0.709i 0.029+ 0.024i
0.003− 0.009i 0.029− 0.023i 0.670+ 0.742i

)
,

(34)ρ̄(QUD1) = 0.12, η̄(QUD1) = 0.30,

with ρ̄ andη̄ defined as

(35)ρ̄ = Re
(
VudV ∗

ubV
∗
cdVcb

)
/
∣∣VcdV ∗

cb

∣∣2,
(36)η̄ = Im

(
VudV ∗

ubV
∗
cdVcb

)
/
∣∣VcdV ∗

cb

∣∣2.
• Case (2):Q andU localized inn = 1, D localized inn = N .

(37)M(QU1DN) = 66.6 GeV

(0.918e0.039i 0.609e−0.590i 0.924e0.135i

0.941e0.038i 0.637e−0.601i 0.946e0.132i

)
,
u

0.930e0.058i 0.622e−0.585i 0.935e0.154i
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e
Fig. 2. Solutions for the 6 quark masses in the case withQ, U andD localized atn = 1. The masses in GeV ar
evaluated at theMZ scale. The range for each mass is given by the edges of the corresponding window.

m(QU1DN)
u = 0.0020 GeV, m(QU1DN)

c = 0.687 GeV,

(38)m
(QU1DN)
t = 168.3 GeV,

(39)M
(QU1DN)
d = 23.2 GeV

(0.041e1.959i 0.045e−0.025i 0.043e2.526i

0.037e1.854i 0.042e0.003i 0.042e2.570i

0.038e1.982i 0.043e0.047i 0.043e2.605i

)
,

m
(QU1DN)
d = 0.0045 GeV, m(QU1DN)

s = 0.084 GeV,
(QU1DN)
 (40)mb = 2.90 GeV,
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Fig. 3. Solutions for the absolute values of the CKM matrix elements in the case withQ, U andD localized at
n = 1. The range for each element is given by the edges of the corresponding window.

(41)V
(QU1DN)
CKM =

( 0.975+ 0.029i −0.097+ 0.197i 0.001+ 0.003i
−0.168− 0.141i −0.880+ 0.420i 0.039− 0.011i
0.003+ 0.010i 0.039− 0.007i 0.999+ 0.011i

)
,

(42)ρ̄(QU1DN) = 0.19, η̄(QU1DN) = 0.33.

• Case (5):Q, U andD localized inn = N .

(43)M(QUDN)
u = 78.4 GeV

( 0.887e0.494i 0.881e0.478i 0.913e0.577i

0.038e−2.066i 0.038e−2.070i 0.041e−2.039i

0.895e−0.410i 0.877e−0.429i 0.929e−0.316i

)
,

m(QUDN)
u = 0.0022 GeV, m(QUDN)

c = 0.674 GeV,
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Fig. 4. Solutions forρ̄ andη̄ in the case withQ, U andD localized atn = 1.

(44)m
(QUDN)
t = 172.6 GeV,

(45)M
(QUDN)
d = 1.37 GeV

(0.895e−1.619i 0.776e1.668i 0.943e−1.622i

0.058e2.456i 0.040e−1.459i 0.063e2.339i

0.835e−2.473i 0.832e0.871i 0.893e−2.468i

)
,

m
(QUDN)
d = 0.0049 GeV, m(QUDN)

s = 0.106 GeV,

(46)m
(QUDN)
b = 2.90 GeV,

(47)V
(QUDN)
CKM =

( 0.974+ 0.042i −0.046+ 0.220i 0.003− 0.003i
0.134− 0.180i −0.676− 0.701i 0.020− 0.033i

−0.010+ 0.006i 0.022+ 0.030i 0.646− 0.762i

)
,

(48)ρ̄(QUDN) = 0.31, η̄(QUDN) = 0.30.

• Case (6):D localized inn = 1, Q andU localized inn = N .

(49)M(D1QUN) = 71.2 GeV

(0.675e−1.829i 0.824e−0.198i 0.837e−0.732i

0.706e−1.783i 0.856e−0.173i 0.868e−0.698i

)
,
u

0.671e−1.837i 0.822e−0.207i 0.834e−0.741i
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m(D1QUN)
u = 0.0026 GeV, m(D1QUN)

c = 0.725 GeV,

(50)m
(D1QUN)
t = 169.2 GeV,

(51)M
(D1QUN)
d = 26.5 GeV

(0.026e0.996i 0.039e−3.019i 0.044e−1.678i

0.027e0.868i 0.037e−3.017i 0.042e−1.655i

0.025e0.957i 0.039e−3.050i 0.044e−1.710i

)
,

m
(D1QUN)
d = 0.0044 GeV, m(D1QUN)

s = 0.088 GeV,

(52)m
(D1QUN)
b = 2.91 GeV,

(53)V
(D1QUN)
CKM =

(−0.972− 0.075i −0.069+ 0.213i 0.001+ 0.004i
−0.050− 0.218i 0.974+ 0.013i −0.039− 0.016i
−0.004− 0.012i 0.038− 0.014i 0.998+ 0.044i

)
,

(54)ρ̄(D1QUN) = 0.26, η̄(D1QUN) = 0.38.

We are now ready for comments on the presented numerical solutions.

4. Concluding comments

In this paper we have reconstructed the observed complex mixing of quark fl
starting with the product group

∏N
n=1[SU(2) × U(1)]n at a higher energy scale. The d

construction of this product group into the electroweak gauge group can indeed prov
necessary components to generate such mixing.

We have built a specific models with 20 parameters to fit the quark mass spectru
the CP phase. However, the numerical fit is found only for the “preferred” configura
where fermion fieldsQ andU are localized at the same position in the theory space
guably, this is because the ratioκU/κD of Yukawa couplings can be responsible only
the difference in the overall scale of up and down-quark masses, while the more
chical internal mass spectrum of the up-quark sector (compared to that of the down
sector) would still require a higher degree of overlapping.

As far as the structure of mass matrices is concerned, the deviation from dem
is moderate. In all the cases, the mass matrices assume a hierarchy with two ro
two columns) having similar absolute value matrix elements, with the third row (or
column) having different values, but still similar along that row (or that column). A q
close mass matrix structure was found in[18], but in a different approach.

We did not perform a study of the dependence on the number of deconstructio
groupsN . We expect anyway that the fitting would be more feasible for largerN as the
wave functions and their overlaps then can be tuned more smoothly. In the other dir
the constraint from flavor changing neutral current that sets an upper limit on the len
extra dimension in the split fermion scenario (see, e.g.,[22]) is also expected to set an upp
limit on the ratioN/V (betweenN and the VEV of link field) in the deconstruction theo
We however leave a more careful analysis of these and other relevant phenomeno

issues for future publications.
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Appendix A. Fermion zero mode in dimensional deconstruction

In this appendix we will work out the general expression of zero eigenstate of the m
of the type(6). This mode plays a special role because it will be identified with the
chiral fermions. To simplify the writing, here we denote this zero eigenstate genera
{x1, x2, . . . , xN−1} while in Section3 we will restore all omitted scriptsQ,U,D, i, j .

A.1. Zero-mode localization at the end-point n = 1

The equation set determining the zero eigenstate(6) is

(A.1)|V |2x1 − MV x2 + V 2x3 = 0⇔ V ∗x1 − Mx2 + V x3 = 0,

(A.2)−MV ∗x1 + (
M2 + |V |2)x2 − 2MV x3 + V 2x4 = 0,

(A.3)V ∗2
x1 − 2MV ∗x2 + (

M2 + 2|V |2)x3 − 2MV x4 + V 2x5 = 0,

...

(A.4)V ∗2
xN−5 − 2MV ∗xN−4 + (

M2 + 2|V |2)xN−3 − 2MV xN−2 + V 2xN−1 = 0,

(A.5)V ∗2
xN−4 − 2MV ∗xN−3 + (

M2 + 2|V |2)xN−2 + (V 2 − 2MV )xN−1 = 0,

(A.6)V ∗2
xN−3

(
V ∗2 − 2MV ∗)xN−2 + [

M2 − M
(
V + V ∗) + 2|V |2]xN−1 = 0.

After a bit of algebra, we can equivalently transform this equation set into

(A.7)X1 = X2 − |ρ|2X3,

(A.8)X2 = X3 − |ρ|2X4,

...

(A.9)XN−3 = XN−2 − |ρ|2XN−1,

(A.10)XN−2 = XN−1 − ρXN−1,

where we have introduced new parameter and variables

(A.11)ρ ≡ |ρ|eiθ ≡ V

M
= |V |eiθ

M
,

( ∗)N−n−1
 (A.12)Xn ≡ ρ xn (n = 1, . . . ,N − 1).
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We note thatV (andρ) is a complex parameter in general (seeAppendix B). The new
simple recursion relation allows us to analytically determine the set{X1, . . . ,XN−1} (and
then the zero eigenstate{x1, . . . , xN−1}) for anyρ (i.e., for any realM and complexV ).
After some combinatorics1 we obtain for 1� n � N − 3

Xn =
∑
k=0

(
N − 3− n − k

k

)(−|ρ|2)k+1
XN−1

+
∑
k=0

(
N − 2− n − k

k

)(−|ρ|2)k
XN−2

=
∑
k=0

(N − 3− n − k)!
k!(N − 3− n − 2k)!

(−|ρ|2)k+1
XN−1

(A.13)+
∑
k=0

(N − 2− n − k)!
k!(N − 2− n − 2k)!

(−|ρ|2)k
XN−2,

and forn = N − 2 (see(A.10))

(A.14)XN−2 = (1− ρ)XN−1.

Using the equality

(A.15)

(
m

p

)
+

(
m

p + 1

)
=

(
m + 1
p + 1

)
,

we can rewrite(A.13) as (with 1� n � N − 3)

(A.16)

Xn =
[∑

k=0

(
N − 1− n − k

k

)(−|ρ|2)k

− ρ
∑
k=0

(
N − 2− n − k

k

)(−|ρ|2)k

]
XN−1.

Again, using another equality[24]

(A.17)sinhpx = sinhx
∑
k=0

(−1)k
(

p − 1− k

k

)
(2 coshx)p−1−2k,

we obtain for 1� n � N − 3 and for|ρ| < 1
2

(A.18)Xn = 2XN−1√
1− 4|ρ|2

[|ρ|N−n sinh(N − n)α − ρ|ρ|N−1−n sinh(N − 1− n)α
]
,

with

(A.19)coshα ≡ 1

2|ρ| ⇔ α ≡ cosh−1 1

2|ρ| (α > 0).
1 Another somewhat simpler solution of the above equation set is presented in[16].
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For |ρ| > 1
2, the expression ofXN is similar to(A.18) but with hyperbolic functions (sinh

and cosh) replaced respectively by trigonometric ones (sin and cos).
Finally, from(A.12) we have altogether

(A.20)xn = Ce−inθ
[
sinh(N − n)α − eiθ sinh(N − 1− n)α

]
(1� n � N − 1),

whereC is the normalization constant determined by the normalization equation

(A.21)
N−1∑
n=1

|xn|2 = 1.

We note that this normalization is nothing other than the unitarity condition of the rot
matrixU (see(8) and(25), (26)).

A.2. Zero-mode localization at the end-point n = N

The chiral boundary conditions (CBC) and the value of parameter|ρ| ≡ |V |/|M| are
two crucial factors that determine the localization pattern of the chiral zero-mod
fermion. For, e.g., in the previous subsection we have seen that, when|ρ| < 1/2, along
with CBCs Q1R = QNR = 0, φ

Q
N−1,NQN,L = VQQN−1,L (2) we can localize the left

handed zero mode ofQ field around siten = 1 (A.20).
On the intuitive ground, we expect that the “mirror image” of(2) (apart from the re-

quirement|ρ| < 1/2)

(A.22)Q1,R = QN,R = 0, φQ†
1,2Q1,L = V ∗

QQ2,L,

would produce a left-handed zero mode ofQ field localized atn = N . A similar calculation
indeed confirms this localization pattern. Specifically, if we denoteyi (i = 2, . . . ,N) the
zero-mode subject to CBCs(A.22), andxj (j = 1, . . . ,N − 1) subject to CBCs(2) as
before, we find

(A.23)yi = x∗
N+1−i (i = 2, . . . ,N),

or even more explicitly (see(A.20))

(A.24)yn = Cei(N+1−n)θ
[
sinh(n − 1)α − e−iθ sinh(n − 2)α

]
(2 � n � N).

Appendix B. The complex-valued link field VEV from broken Wilson line

Since the link fieldsφn,n+1 transform non-trivially under two different groups, we m
expect its VEV to be complex in general. It is because in this case the VEVs phase
not be rotated away in general. The standard and rigorous method to determine th
is to write down and then minimize the corresponding potential. It turns out[23] that there
always exist ranges of potential parameters which generate complex VEV. In this app
however, we just recapitulate the complexity nature of link field VEV from the lattic

extra dimension perception which is derived in[14] in details. Though the approach taken



P.Q. Hung et al. / Nuclear Physics B 712 (2005) 325–346 343

ould

inter-

d

ntial

com-

over-

ns
d
by

nction

y

in this work does not strictly stem from latticizing the fifth dimension, this perception c
still serve as the principle illustration.

To make the connection between DD theory and its latticized ED counterpart, we
pret the link field as a Wilson line connecting two neighboring branes

(B.1)φn,n+1 ∼ exp

( (n+1)a∫
na

igχy dy

)
∼ exp(igaχn),

whereχn essentially is the ED component of gauge field,g anda are gauge coupling an
lattice spacing, respectively.

Following the DD symmetry breaking[SU(2) × U(1)]N → [SU(2) × U(1)], only one
linear combinationχ0 of link fields remains massless at the classical level

(B.2)χ0 = 1√
N

N∑
n=1

χn.

In the leading order with radiative correction, by minimizing the 1-loop effective pote
of χ0, one obtains2

(B.3)〈χ0〉 = 2πk

ga
√

N
(k ∈ N).

From(B.1), (B.2), one see that in the leading order the link fields assume a uniform
plex VEV

(B.4)〈φn,n+1〉 ∼ exp

(
i2kπ

N

)
.

Actually, this phase can be considered arbitrary.

Appendix C. Wave function overlap in theory space

In this appendix we present the analytical expressions of zero-mode wave function
laps in the theory space, from which follow the mass matrix elementsM

u,d
ij (27), (28).

These expressions in turn were compiled using the exact solutions(A.20), (A.24) for the
wave functions. In what follows we useXX to denote the overlap of two wave functio
localized at the same siten = 1, andXY the overlap of the first wave function localize
at n = 1 and the second atn = N . All other overlap configurations can be easily found
virtue of relation(A.23).

2 The finiteness of 1-loop effective potential requires the mass of fermionic tower be trigonometric fu

of the mode number[14]. In the continuum limit such as in a “S1/Z2” compactification, the orbifold boundar

conditions(2) can fulfill this requirement.
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ap of
It follows from Eqs.(27), (28)that

XX =
(

N−1∑
n=1

x(1)∗
n x(2)

n

)
+ x

(1)∗
N−1x

(2)
N−1

= C1C2

4

(
e(N−1)(iθ1−iθ2−α1−α2) − 1

1− e−(iθ1−iθ2−α1−α2)
eN(α1+α2)

(
1− e−iθ1−α1

)(
1− eiθ2−α2

)

− e(N−1)(iθ1−iθ2−α1+α2) − 1

1− e−(iθ1−iθ2−α1+α2)
eN(α1−α2)

(
1− e−iθ1−α1

)(
1− eiθ2+α2

)

− e(N−1)(iθ1−iθ2+α1−α2) − 1

1− e−(iθ1−iθ2+α1−α2)
eN(−α1+α2)

(
1− e−iθ1+α1

)(
1− eiθ2−α2

)

+ e(N−1)(iθ1−iθ2+α1+α2) − 1

1− e−(iθ1−iθ2+α1+α2)
e−N(α1+α2)

(
1− e−iθ1+α1

)(
1− eiθ2+α2

))

(C.1)+ C1C2e
i(N−1)(θ1−θ2) sinhα1 sinhα2,

XY = x
(1)∗
1 y

(2)
2 +

(
N−1∑
n=2

x(1)∗
n y(2)

n

)
+ x

(1)∗
N−1y

(2)
N

= C1C2e
iθ1−2θ2

[
sinh(N − 1)α1 − e−iθ1 sinh(N − 2)α1

]
sinhα2

+ C1C2

4

(
−e(N−2)(iθ1−iθ2−α1−α2) − 1

1− e−(iθ1−iθ2−α1−α2)
eiθ1−iθ2−α1−α2eNα1+α2

× (
1− e−iθ1−α1

)(
1− e−iθ2+α2

)
+ e(N−2)(iθ1−iθ2−α1+α2) − 1

1− e−(iθ1−iθ2−α1+α2)
eiθ1−iθ2−α1+α2eNα1−α2

× (
1− e−iθ1−α1

)(
1− e−iθ2−α2

)
+ e(N−2)(iθ1−iθ2+α1−α2) − 1

1− e−(iθ1−iθ2+α1−α2)
eiθ1−iθ2+α1−α2e−Nα1+α2

× (
1− e−iθ1+α1

)(
1− e−iθ2+α2

)
− e(N−2)(iθ1−iθ2+α1+α2) − 1

1− e−(iθ1−iθ2+α1+α2)
eiθ1−iθ2+α1+α2e−Nα1−α2

× (
1− e−iθ1+α1

)(
1− e−iθ2−α2

))

(C.2)+ C1C2e
i(N−1)θ1−Nθ2 sinhα1

× [
sinh(N − 1)α2 − e−iθ2 sinh(N − 2)α2

]
,

whereC1,C2 are the normalization factors, which are determined also from the overl

the respective wave function with itself.
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Appendix D. Numerical tables

Table 1
Central values and uncertainties for the masses of the 6 quarks evaluated
at MZ , for the two ratiosmu/md andms/md , for the absolute values
of the CKM matrix elements and the CP parametersρ̄, η̄

xi 〈xi 〉 |xmax
i

− xmin
i

|/2

mu 2.33× 10−3 0.45× 10−3

mc 0.685 0.061
mt 181 13
md 4.69× 10−3 0.66× 10−3

ms 0.0934 0.0130
mb 3.00 0.11
mu/md 0.497 0.119
ms/md 19.9 3.9
|Vud | 0.97485 0.00075
|Vus | 0.2225 0.0035
|Vub| 0.00365 0.0115
|Vcd | 0.2225 0.0035
|Vcs | 0.9740 0.0008
|Vcb| 0.041 0.003
|Vtd | 0.009 0.005
|Vts | 0.0405 0.0035
|Vtb| 0.99915 0.00015
ρ̄ 0.22 0.10
η̄ 0.35 0.05

Table 2
20-parameter space solutions found in 4 different cases of the model presented in Section3.1 (N = 10 for all
cases)

(QUD1) (QU1DN) (QUDN) (D1QUN)

αQ1 2.290 0.208 2.311 0.215
αQ2 0.007 0.236 0.011 0.251
αQ3 1.497 0.220 1.656 0.213
αU1 0.771 0.439 0.623 0.572
αU2 0.759 1.900 0.603 0.823
αU3 0.927 0.433 0.722 0.745
αD1 0.829 0.027 0.794 0.541
αD2 0.535 0.022 0.471 0.057
αD3 1.123 0.029 1.105 0.022
θQ1 1.002 0.974 1.234 0.959
θQ2 3.862 0.983 4.702 0.958
θQ3 1.678 0.989 1.999 0.965
θU1 1.163 1.407 1.276 0.197
θU2 1.100 14.78 1.246 13.67
θU3 1.247 −5.290 1.420 −5.52
θD1 −0.204 −0.535 −0.135 −0.182
θD2 3.098 4.715 2.809 3.471
θD3 0.086 9.645 −0.174 9.499
κUv/

√
2 78.37 66.63 78.36 71.21√
κDv/ 2 1.35 23.24 1.37 26.48
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