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Abstract

Itis shown that the deconstruction[@U(2) x U (1)]V into [SU(2) x U (1)] is capable of providing
all necessary ingredients to completely implement the complex CKM mixing of quark flavors. The
hierarchical structure of quark masses originates from the difference in the deconstructed chiral zero-
mode distributions in theory space, while the CP-violating phase comes from the genuinely complex
vacuum expectation value of link fields. The mixing is constructed in a specific model to satisfy
experimental bounds on quarks’ masses and CP violation.
0 2005 Elsevier B.V. All rights reserved.

PACS 11.25.Mj; 12.15.Ff

1. Introduction

Dimensional deconstructidf,?] is a very interesting approach to dynamically generate
the effects of extra dimensions departing from the four-dimensional (4D) renormalizable
physics at ultraviolet scale. That is, apart from having the viability in the sense of renor-
malizability, whatever amusing mechanisms being dynamically raised by the virtue of extra
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dimensions (ED) now can also be easily arranged to rise dynamically in a pure 4D frame-
work. In this paper we look specifically into two such important mechanisms of extra
dimension theories, namely the localization of matter fields in the [3#k] and the dy-
namical breaking of CP symmetry by ED Wilson lif@-9]. Ultimately, the hybrid of

these two mechanisms is just the well-known complex mixing of fermion flavors. And it is
conceptually interesting to note that dimensional deconstruction (DD) nicely encompasses
both of these issues. In other words, complete Cabibbo—Kobayashi—-Maskawa (CKM) mix-
ing can be generated naturally via dimensional deconstruction.

With the presence of extra dimensions, one has a new room to localize the matter fields
differently along the transverse directions as in the so-called split fermion scenario. Vari-
ous overlaps of fermions of different flavors then induce various fermion masses observed
in nature (see, e.d10-12). Amazingly, the deconstruction interaction is also able to pro-
duce similar localization effec{43]. Indeed, after the spontaneous breaking of link fields,
fermions get an extra contribution to their masses via the Higgs mechanism. Fermions then
reorganize themselves into mass sequences and the lightest mass eigenstate of these tow-
ers exposes some interesting “localization” pattern in the theory space (also referred to as
deconstruction group index space). We will first work out the analytical expressions and
confirm the localization of these zero modes in a rather generic deconstruction set-up. The
next question to raise is how to make these light modes chiral. Imposing some kind of
chiral boundary conditiong] is the answer again coming from the ED lessons. There is
however one more subtle point to be mentioned here. If one truly wishes to relate the ED
scenario to the dimensional deconstruction, one needs to latticize the extra dimensions to
host the deconstruction group. There comes the lattice theory’s issue of fermion doubling,
and its standard remedy, such as adding to the Lagrangian a Wilsorfli¢frmvould re-
move half of original chiral degrees of freedom. This is the reason why most of previous
works addressing the fermionic mixing in deconstructed picture (24.3,15) usually
start out with only Weyl spinors. In the current work, we adopt a different and somewhat
more general 4D deconstruction appro§t] where no extra dimension is actually in-
voked. As a result the fermions to begin with keep a standard 4-component Dirac spinor
representation.

In any deconstruction set-up, the link fields transform non-trivially under at least two
different gauge groups. This implies a complex vacuum expectation value (VEV) for these
fields, whose phase would not be rotated away in general. After the deconstruction process,
this phase is carried over into the complex value of wave functions and wave function
overlaps of fermions. In turn, the induced complex-valued mass matrices can render a
required CP-violating phase in the well-known KM mechanism. In contrast, we note that
the generation of complex mass matrices within the split fermion scenario is a non-trivial
problem and requires rather sophisticated techniques to §bi&8] Interestingly, the
above CP violation induction via deconstruction can also be visualized in extra dimensional
view point. Indeed, because of having the same symmetry transformation property, DD link
field can be identified with the Wilson line pointing along a latticized transverse direction
(Appendix B), and the latter then can naturally acquire a complex VEV in the generalized
Hosotani’s mechanisii—9] of dynamical symmetry breaking. Apparently, the source of
CP violation in this approach comes from the complex effective Yukawa couplings so it can
be classified as hard CP violation. Nevertheless, those couplings acquire complex values
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after the spontaneous breaking of the DD link fields. In that sense this CP violation pattern
could also be considered soft and dynamical.

This paper is presented in the following order. In Secttohwe give the zero mass
eigenstate of fermions obtained in the deconstructed picture, in Sex@ahe result-
ing expression of mass matrix elements, and in Sei@the symmetry breaking of
[SU(2) x U]V into [SU(2) x U(1)]. In Section3 we present the numerical fit for quark
mass spectrum and CKM matrix in a model where each “standard model” Higgs field is
chosen to transform under only a single deconstruction subgroup. The conclusion and com-
ments on numerical results is given in SecoAppendix Aprovides a detailed derivation
of zero mode wave functions in 4D deconstruction using combinatoric technigpesn-
dix B outlines intuitive arguments on the complexity of link field inspired by lattice models.
Appendix Cpresents analytical expressions for wave function overlaps used in the deter-
mination of mass matrix elements. FinalAppendix D gives referencing values of key
physical quantities that have been used in the search algoritabte( ), and numerical
solution of our models’ parameteraple 2.

2. Deconstruction and quark mass matrix

In this section we describe how the mixing of quark flavors arises in the DD picture.
But we first briefly recall the basic idea of the dimensional deconstruction applied to just a
single quark generation. The family replication will be restored in the later sections.

2.1. Zero-mode fermion

We begin with N copies of gauge grou®UJ(2) x U(1)], wheren =1,..., N.
To each groudSU(2) x U(1)], we associate &J(2),,-doubletQ,,, and twoU(2),-
singletsU,,, D,. These fields transform non-trivially only under their corresponding group
[SUR) x UMD, as(2,q0), (1, qu), (1, gp) respectively, withy’s denotingU (1)-charges.
Finally, we use 8N — 1) scalarsd)nQ_M, ¢f/_1,n, ¢f_1’n transforming respectively as
(2,9012,—=q0), (1,qu|l, —qu), (1, gpll, —gp) under[SU(2) x U(D],-1 x [SU(2) x
U(1)], to “link” fermions of the same type. Because of this, scal@issare also referred
to as link fields hereafter. For the simplicity of the model, we assume a symmetry for the
Lagrangian under the permutation of group index

The ]'[,’le[SU(Z) x U(1)], gauge-invariant Lagrangian of the fermionic sector is

N _ N-1 _ N _
L= (Z OniPn On + Z Qn¢,gn+1Qn+l_ MQZ QnQn)

n=1 n=1 n=1

+(Q <« U)+(Q < D), 1

whereP,, denotes the covariant derivative associated with gauge g&u?) x U (1)],,
andMg, My, Mp are the bare masses of fermions. Ultimately, we are interested in achiev-
ing chiral fermions of standard model (SM) at low energy scale. To this aim we impose the
following chiral boundary conditions (CBC) on fermion fiel @3

Q1r =0OnNr =0, ¢1€_1,N OnL=VoON-1L,
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UlL:UNL:Os ¢1L\//_1’NUN,R:VUUN—1,Rs
D1, =Dy =0, ¢1€,1,NDN,R =VpDn_1r. (2

We note that those conditions are in agreement with the gauge transformation property of

fields, e.g.,qb[%_l‘NQN,L and Qy_1,; transform identically under the underlying gauge

groups. Essentially, these boundary conditions render one more left-handed degree of free-

dom over the right-handed fap field, and the contrary holds fdy and D fields. The

actual calculation will show that the zero-mode@®@ffield indeed is left-handed while for

U, D itis right-handed. When the link fields?:Y-? assume VEV proportional tég v p,

above CBC become the very reminiscence of Neumann and Dirichlet boundary conditions.
In the deconstruction scenario, after the spontaneous symmetry breaking (SSB) the link

fields acquire an uniform VEWy v p respectively, independent of site indexin ac-

cordance with the assumed permutation symmetry), and the fermions obtain new mass

structure. Using the CB(Q), the fermion mass term can be written in the chiral basis as

O1r O2r
(O28. ... On-1.R)[Mo] + (01, ..., On-1.0)[Mp]"
On-1L ON-1,R
+ (Qr,L < UL,R)+ (Qr,L < DL r), 3)
where the matriXM ] of dimension(N —2) x (N — 1) is
—Vé Mgy —Vp 0
0 -V5) Mg -V
0 0 -Vi Mg
[Molv-2yx(N—1) = ©
Mg —Vo
—Vé MQ — VQ

(4)

By interchangingQ .1 <> UL g, Or.. < DL, r, the matrice§My 1, [Mp] of dimension
(N — 1) x (N — 2) can be analogously found.
By coupling the following Dirac equations for chiral fermion sér} = (Q2x, ...,

On-1.r)" and{Qr} = (Qir,.... On-1.0)"

if{Or) — [Mpl{QL} =0, {01} — Mol {Qr} =0, (5)

we see tha[MLMQ] is the squared-mass matrix for the left-handed compongptand
[MQML] for the right-handed g . Since at low energy, we are interested only in the chiral
zero modes of fermions, we will work only WilIrMEMQ], [MUMIB], [MDM};] in what
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follows
Vo2 —Mgvg V3 0
* M2+ 2
—MpV —2MpV %
20 Vol ovo 0
M2+
V%2 oM,V o _2MpV
0%y, 0vo
M2+
2 0o
. 0 (Vé) ZMQV5 2WQ|2
[MQMQ]= . )
2
M2+
—2M V¥ 0 —2MpV, v2
00 gy, 0o o
M2 + —2MpVpo+
(Vé)2 ~2Mg v}, 0 QZQ
2vgoP? Vol
_ % 2 2
0 (V¥)2 MoVot Mp+2aVol®-
2 V52 g+vhiMg

(6)
and similar expressions hold chMUMlT]], [MDM,T)]. The quantitative derivation of the
zero-eigenstates, which are identified with the SM chiral fermion, is presentsgpien-
dix A. In this section we just concentrate on some qualitative discussion. In general the
diagonalization of matrice®) leads to the transformation between gauge eigensgaies
and mass eigenstaték, ;.

QnL = [Z/[Q]nm QmLa QnL = [uQ]:m QmL’ (7)
where the matriXt/o | diagonalizes{M;MQ]

[MMo]giag= o1 [M{Mo] U1 ®)

The key observation, which will be analyzed in more detaildppendix B is that VEV

Vo.u,p are generically complex arfé{p ¢, p] are truly unitary (i.e., not just orthogonal).

This in turn gives non-trivial phases to zero-mode fermiohg , Uo; , Do, in Eq.(7) and

after the SM spontaneous symmetry breaking the obtained mass matrices are complex.
Further, the explicit solution of zero mod®@o; (and Ugr, Dor) in the mass eigenbasis
exhibits a very interesting “localization” pattern in the group index spatseeAppen-

dix A). This in turn can serve to generate the mass hierarchy among fermion families in
a manner similar to that of ED split fermion scenario (see, §1&.18]). Thus we see

that dimensional deconstruction indeed provides all necessary ingredients to construct a
complete (complex) CKM structure of fermion family mixing.

2.2. Complex mass matrix

In order to give mass to the above chiral zero-mode of fermions, we introduce Higgs
doublet fields just as in the SM. In the simplest and most evident scenarig1l&ge
there is one doublet Higg#l, transforming as(2,qp9 — gp = qu — qo) under each
[U(©2) x U(D)], group. We also implement the replication of families by incorporating
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family indicesi, j =1, ..., 3. Another scenario to generate the (vector-like) fermion mass
hierarchy by assuming various link fields to connect arbitrary sites of the latticized fifth
dimension has been proposed18].

The gauge-invariant Yukawa terms read

ZQ%@H Uy +/<DZQ<1>H DY +H.c. (9)
n=1

In order to extract the terms involving zero modes, which are the only terms relevant at low
energy limit, we rewritg9) in the mass eigenbasis. However, this procedure depends ex-
plicitly on the specific CBCs being imposed on each of the figldé/, D. To be generic,
let us consider the following configuration. We assume the “localization” of zero modes
Qor, Uor and Do to be atn = 1,n = 1 andn = N, respectively. To achieve this localiza-
tion pattern, we impose the following CBCs on these fields (se€ZqndAppendix A
Eqg.(A.22))

) () 0 @) @) A @)
Q1r=0nr =0 ¢n_1nOnr=Vo QN 11
U _770) _ HU ) _ (J) )
Uy =Uy. =0, dnZanUne =V UnZ1rs
(k) (k) DT k) (k) py (k)
Dy, =Dy, =0, b12° Dig=Vp Dy (10)

Because of these boundary conditions, zero ma2tgs Uor and Dog would be localized

atn =1,n =1 andn = N respectively, this also means that the first term of @ywould
represent the overlap between 2 wave function localized at the same=site while the
second term represents the overlap between wave functions localized aandn = N
Using(10)to eliminate the dependent components and after the SM spontaneous symmetry
breaking(H,) = (0, v/~/2)T uniformly for all n’s, we can rewrite the Yukawa ter(8) as

3 y® y )
Z Q(Z)U(]) Y u Q(t) Uy
1L i)Q (HU N-1L~N-1R
j:
1
v
Kii —=

N—-1,N ¢N—1,N

v
7
N—
Z (t) U(J) (l) UIEJL)):|
(k * (@)
D

3
V
(t) (k) @) (k)
«/— Z|: 1L 2R+¢(,)Q QN lL

oDt
¢§% N—-1,N

N—
Z(Q(I)D(k) Q(I)D(k)):|_ (11)

n=2

After going to the mass eigenbasis by the virtue of transformation of theB)pkeeping
only zero-mode terms and together with the assumption of universality for the Yukawa
couplings in the up and down sectors, we obtain the following effective mass terms

Z 04 MU UG + Z 04 MEDSY. (12)
i,j=1
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with

= 3 (ST, o)

n=1
i )
g (TR N @
N-1,N YN-1,N
d v VE e D)7+ ) o (k)
Mik=KD72 (k)DT[UQ ]1,o+[uQ ]2,0 [UD ]2,o+ [u ] [L{ ] ,0
¢l,2 n=3
V(’)
O o188 ot )| 0
SNAN

Because al[li{p], [Uy], [Up] are unitary, the mass matricég”, M? are generally com-
plex. Thus in this simplest deconstruction approach, we might better understand the dy-
namical origin of CP-violation phase in the SM mass matrices. We also notd 8)at14)
represent the specific case whebe;, Uor and Doy are localized at = 1, n = 1 and
n = N, respectively. All other localization configurations can be similarly found. Further,
when we replace link fieldg’s in (13), (14) by their VEVs following the deconstruction,
these mass matrix elements will look much simpler (299, (28)).

Before moving on to give explicit expressions of these complex-valued mass matrices
in term of zero mode wave functiondgpendix A and perform the numerical fit, let us
briefly turn to the breaking pattern of product gro]ﬁ[;j\’:l[SJ 2 x UD],.

2.3. Deconstructing [SU(2) x U(D)1V

For the sake of completeness, in this section we will describe the breakjSy ¢f) x
U(1)1V into the SM[SU(2) x U(1)] gauge group by giving uniform VEVs to link fields.
The transformation and charge structure of fermions and scalar link fields have been de-
fined in the beginning of previous section. To identify the unbroken symmetries following
the deconstruction, we look at the covariant derivative and kinetic terms of scalars

/ /
. 8o .80

Dy 1= 0y i1 = 190 5 Buuy y1 +190 5 Brstu®y s (15)
/ /

1) 1)
D/L¢£n+1 = au¢£n+1 igp— 2 np.‘pn n+1 +igp— 2 n+1;4¢£,1+1» (16)

whereB,, is the gauge boson associated witkil),,, while g; is the common gauge cou-
pling for all U(1)'s. For Abelian groups, the opposite signs of the last two tern{4 %)
(and also in(16)) originate from the opposite chargesghﬁ (andq’) ) underU (1),
andU (1),,1 (so that terms Iikd?nqS,ﬁ{nHUn are gauge-invarlant).

For non-Abelian groups, the similar sign reversing will hold for terms in the expres-
sion of covariant derivatives (see H@1)), the nature of which also has its root in the
gauge invariance of the theory. Indeed, under the Yang—g8ille2),, x U (2),,+1 gauge

n,n+1
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transformation (note that®, , , is a 2x 2-matrix)

o ) T

¢n,n+l - T"¢n,n+1Tn+l’ (17)

Qn —> T Qn» Qn+l - Tn+lQn+1v (18)
. A ;

|:A)1u§] - Tn [AHHE]TH - g(aMTﬂ)Tn ) (19)
- T - T i

|:An+1u §i| — Tht1 |:An+1u §j| TnT+1 - g 0uTyu+1) TnT+1- (20)

The covariant derivative Ozann +1 Must be formulated as follows (so that it transforms

exactly likeg2, . in (17))

/ -
0 0 .80 0 o2 T
Dﬂ¢n,n+1 = a,U-(l)n,n+l - (qu ?Bnﬂd)n,n—ﬁ—l + lgOA”M §¢n,n+l>
g . ;T
+ (ZQQ EOBn—i-lp.‘p,gnJrl + 180¢,gn+1Anu E) > (21)

whereA, and7, are respectively the gauge bosons and somezspecial unitary matrix
characterizing th&U (2),, transformation, whilezg is the common gauge coupling for all
V(2)’s.

After the deconstructiortp,i{;frl — VU,D',. ¢,gn+1 — Vp : 1r.2, the mass. ter.ms
for gauge bosons are generated. Specifically, we obtain as parts of kinetic terms
(Dpol ) DY, D), (DugP, DT (D PP, ), (D2, DT (D" 2, . ] the fol-
lowing gauge bosons squared mass matrices

1 -1
-1 2
[ME]="s :
2 -1
-1 1
1 -1
-1 2
[M2] =2z : (22)
2 -1
-1 1

where, after restoring the family replication indéx<{ 1, 2, 3),

3 3
ro=) so 2@ |Ve P+ BV P+alve' ). ra= Vel @3)
1 1

Both matrices if{22) have a “flat” zero eigenstate. This indeed indicates the uniform break-
ing of [SU(2) x U (1)]" into the diagonal (SM) grouf8U (2) x U (1)], whose gauge bosons
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are massless and given by

1 X . 1 X

By=——Y By, Ay=—=Y Ay (24)

I3 \/ﬁg_ nu I3 m; nu

In Eq. (23)it is also shown that the pattern of symmetry breaking is not spoiled by family
replication as long as charges (andgp, g ) are independent of the site indexinder a
presumed permutation symmetry (just Iil(él’)DyQ). Finally, by extracting the interaction
between fermions and massless gauge bosons from fermion kinetic teffjsoime can
see that the couplings of the unbroken group scal asg)/+/N andg = go/+/N, while
the charge structure (of fermions in mass eigenbasis) under this diagonal group remains
intact.

3. Fitting the model's parameters
3.1. Model, parameters and numerical method

In the previous section we have outlined the process diagonalizing the squared-mass
matrix (6). The complete diagonalization process is complicated, but as we are concerned
only with the zero eigenvalue problem, the computation can be done analytically in the
general term (seAppendix A). Since[l/p] diagonalize$MZzMQ] (8), the zero eigenstate

of [MLMQ] is just the first column oftdp 1, i.e., in the notation oAppendix A

(@) @)
[Uo']s0="on (25)
and similarly
() ) (k) (k)
(U ]n,o =X/, [Up ]n,o = Ypn> (26)

wherex,’s are given in(A.20) (corresponding to a zero mode localized at the end point
n = 1) andy,’s in (A.24) (corresponding to a zero mode localized at the end poiatV).

After the spontaneous symmetry breaking, the link fields acquire an uniform VEV
Vo.u,p respectively (independent of site index In term ofx,’s andy,’s, the SM mass
matriceg(13), (14) for up and down quark sectors become

N-1
Y ()% (j) i ()
Mj; = ky /2 |:< Z X0n xUn) +xQN—1xUN—1:|’ (27)
n=1
’ N-1
d _ @)= (k) @)= (k) ()* (k)

My _KD72|:XQ1 Yp2 Tt <ZxQn yDn) +xQN—1yDN:|’ (28)

n=2

wherex,’s, y,'s are given in(A.20), (A.24), respectively. The analytical forms @27),
(28)in term of model’'s parameters are worked oufjspendix G Egs.(C.1), (C.2)

Again, let us remind ourselves th@7) represents the overlap between two wave func-
tions localized at the same site= 1 while (28) represents the overlap between one wave
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function localized ak = 1 and the other at = N. The model under consideration con-
sists of 20 real parameters (s&gble 2and Appendix B: 3 complex VEVV'’s for each
complete quark generatidi@, U, D); (i = 1,2 or 3), and 2 real “dimensionful” Yukawa
couplingskyv/~/2, kpv/+/2. We choose to fitv = 10 throughout.

The numerical approach to fit the parameters consists in minimizing a positive func-
tion which gets a zero value when all the predicted quantities are in the corresponding
experimental rangg48]. The minimization procedure is based on the simulated annealing
method, which seems working better than other minimization approaches when the para-
meter space becomes lardg®,21] The input referencing physical quantities are given in
Table lof Appendix D

We consider eight different cases, which correspond to all the eight possible ways of
localizing the left and right components. The eight different cases are the following:

(1) 9, U andD localized inn = 1 denoted asQU D1);

(2) Q andU localized inn =1, D localized inn = N denoted asQU1DN);
(3) Q andD localized inn =1, U localized inn = N denoted asQ D1UN);
(4) Qlocalized inn =1, U andD localized inn = N denoted asQ1U DN);
(5) Q, U andD localized inn = N denoted asQU DN);

(6) D localized inn =1, Q andU localized inn = N denoted asD1QUN);
(7) U localized inn =1, Q andD localized inn = N denoted asU1QDN);
(8) U andD localized inn =1, Q localized inn = N denoted asU D1QON).

We specially note that, due to the mirror complexity between C&fand(A.22), the
mass matrices obtained in the cases (1) and (5), cases (2) and (6), cases (3) and (7), cases
(4) and (8), are complex conjugate pairwise. In the result, all eight cases are inequivalent.

3.2. Numerical results

In the following we present the characteristically important numerical results for the
four cases out the eight mentioned above, for which we were able to find solutions. The
cases are referred to in the above order. For each case we give one particular, but typical,
numerical complete set of the 20 defining paramet&ablé 9, the quark mass matrices
and quark mass spectra, the CKM matrix and the CP parameters. Complex phases are mea-
sured in radiant, andy = 10 for all cases. The masses are given in GeV and are evaluated
at theM  scale. For the sake of visualization, we also present graphically the comprehen-
sive solutions of the quark wave function profiles in the theory spBice (), the mass
spectrum FEig. 2), the CKM matrix fig. 3 and thep—; CP parameters=g. 4) for the
case of all fieldsD, U and D localized at the same site= 1.

e Case (1):Q, U andD localized inn = 1.

0.925 70558 0,923 ~0-50% 0 951,-0-570
) (29)

MPUPD =784 GeV| 0.027>00% 00272046 0,029,2006
0.9480306 09420367 9730280
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0.8 x P
— [} QH}
E 0.6 . Q¥

% X .yl
D O - 4 8 . = o uz
— X % n O v
0.2 . - X o
§ é X L] x i3
0 @ é & ) &) X pt»

2 4 6 8

Fig. 1. Profiles of the absolute value of normalized wave functlm@%\ Ix(l) | and \x(’) | in the theory space
(N = 10) for the case withQ, U and D localized at: = 1. |x(2) | with a value ofa « 1 is less localized.

m@UPY = 00021 GeV  m(CUPV =0.702 GeV,
<QU P — 1811 GeV, (30)
0.90%14%¢ 07822072 0,96Q.%9%2
MQUPY _ 1 35 GeV( 0.030:~264%  0,048090 0,032 302 ) (31)
0.848:23%%  0,79%-13%% (9181838
m(PUPY — 00045 Gevy  m(PUPY =0.106 GeV,
<QU P~ 289 Gev. (32)

In Egs.(29), (31)the mass matrices are written in a form that better shows deviations
from the democratic structure. In E(3) we give the expression for the CKM matrix, in
Eq. (34) the values for the CP parametegrands;.

0.975—-0.009 —0.151—-0160 —0.001— 0.003
veuny (o 015+ 0219 -0.669+0.709  0.029+ 0.024 ) (33)
0.003—0.009% 0.029—0.023  0.670+ 0.742
peUPY — 012, 7CUDPY = 0.30, (34)
with p and# defined as
2
p=Re(VuaV, VEaVes) [ |Vea V| (35)
_ 2
7= 1M (Vaa Vi, Vig Vo) /| Vea Vi | (36)
e Case (2):Q andU localized inn =1, D localized inn = N.
0.918003% 06090590 (0,924,013%
MLYIPN) = 66,6 GeV( 0.941,00%8 06370601 0.946,0132 (37)
0.930:00%8 0,622, 7058% (9350154
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Fig. 2. Solutions for the 6 quark masses in the case @itV and D localized at: = 1. The masses in GeV are
evaluated at th@/, scale. The range for each mass is given by the edges of the corresponding window.

m(@UIPN) — 00020 GeV  m(QV1PN) —0.687 GeV.

m;QUlDN) —1683 GeV. (38)
0.041e2959 0,045 0025  0,0432526

MPUTPN) — 232 Gev< 00371854 00420003  0,042:2570 ) : (39)
0.03819%82  0.0430047 00432605

m(PUPN) — 00045 Gev  m(CUPN) — 0,084 GeV,

ml(]QUlDN) —=2.90 GeV. (40)
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0.0375 0.04 0.0425 0.999 0.9991 0.9992 0.9993
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Solutions for the absolute values of the CKM matrix elements in the casgwithand D localized at
n = 1. The range for each element is given by the edges of the corresponding window.

0.975+0.029 —0.097+0.197 0.001+ 0.003
v euipn) <—0.168— 0.141 —0.880+0.42G 0.039-— 0.01% ) . (4D)
0.003+001G  0.039—0.007 0.999+ 0.01%

Ia(QUlDN) — 019’

7(QUIPN) — 033, (42)

e Case (5):0, U andD localized inn = N.

0.887.04%4 088104’ 09130577
>, (43)

MLUPN) =784 Gev<0.038e—2-°66' 0.038 2070 0,041,~203%

0.895 0410 08770429 (929 ~0316

m@UPN) — 00022 Gev  m VPN —0.674 GeV,
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Fig. 4. Solutions fop ands in the case withQ, U and D localized ath = 1.
m@UPN) — 1726 GeV,
0.895 1619 0776:1608  0.943 1622
M{PUPN) =137 GeV| 0.0582%%8  0.040 1459 0063233 |,
0.835%~247%  0.832087% 0893, —2468

m PYPN) —0,0049 GeV
m{CYPN) — 290 GeV,

m{CUPN) — 0,106 GeV,

0.974+0.042  —0.046+0.220 0.003— 0.003
V@M — ( 0.134—0.18G —0.676—0.70% 0.020— 0.033

—0.010+0.006 0.022+0.030  0.646— 0.762
pCUPN) — 0,31, 7(CUDN) — 0.30.

e Case (6):D localized inn =1, Q andU localized inn = N.

0.824 0198
0.856:~0-173
0.822, 0207

0.675 1829
MPUN) =712 Gev<0.7oee—l-783'
0.671¢ 1837

0.837. 0732
0.868,~0.698
0.834 0741

)

)

(44)

(45)

(46)

(47)

(48)

(49)
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m(PUN) = 0.0026 GeV  m!P1eUN) = 0.725 GeV,
(DlQU M — 1692 GeV, (50)
0.026:09% 0,039 3019 0,044, ~1678
MPIeUN) — 265 Gev( 0.027.08%8 0,037 301% (0,042~ 1655 (51)
0.025%97 00393050 0,044 ~1710
m{PUN) = 00044 Gev  m(POUM = 0,088 GeV.
(DlQU M _291GeV, (52)
—0.972—0.075 —0.069+0.213  0.001+ 0.004
VAU <—o.050— 0218 097440013 —0.039— 0.016) (53)
—0.004—0.012 0.038—0.014  0.998+ 0.044
p 1IN =026 7PUN =038 (54)

We are now ready for comments on the presented numerical solutions.

4. Concluding comments

In this paper we have reconstructed the observed complex mixing of quark flavors,
starting with the product grouﬁ[f:’:l[SU(Z) x U(1)], at a higher energy scale. The de-
construction of this product group into the electroweak gauge group can indeed provide all
necessary components to generate such mixing.

We have built a specific models with 20 parameters to fit the quark mass spectrum and
the CP phase. However, the numerical fit is found only for the “preferred” configurations
where fermion field®D andU are localized at the same position in the theory space. Ar-
guably, this is because the ratig /«p of Yukawa couplings can be responsible only for
the difference in the overall scale of up and down-quark masses, while the more hierar-
chical internal mass spectrum of the up-quark sector (compared to that of the down-quark
sector) would still require a higher degree of overlapping.

As far as the structure of mass matrices is concerned, the deviation from democracy
is moderate. In all the cases, the mass matrices assume a hierarchy with two rows (or
two columns) having similar absolute value matrix elements, with the third row (or third
column) having different values, but still similar along that row (or that column). A quite
close mass matrix structure was foundi8], but in a different approach.

We did not perform a study of the dependence on the number of deconstruction sub-
groupsN. We expect anyway that the fitting would be more feasible for largexs the
wave functions and their overlaps then can be tuned more smoothly. In the other direction,
the constraint from flavor changing neutral current that sets an upper limit on the length of
extra dimension in the split fermion scenario (see, £8)) is also expected to set an upper
limit on the ratioN/V (betweenV and the VEV of link field) in the deconstruction theory.

We however leave a more careful analysis of these and other relevant phenomenological
issues for future publications.
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Appendix A. Fermion zero mode in dimensional deconstruction

In this appendix we will work out the general expression of zero eigenstate of the matrix
of the type(6). This mode plays a special role because it will be identified with the SM
chiral fermions. To simplify the writing, here we denote this zero eigenstate generally as
{x1,x2, ..., xy—1} while in Section3 we will restore all omitted script®, U, D, i, j.

A.1l. Zero-mode localization at the end-point n = 1

The equation set determining the zero eigeng@ites

IVI%x1 — MVxs+ V2x3=0& V*x1 — Mxa+ Vx3 =0, (A.1)
—MV*x1+ (M?+ |V|?)x2 — 2M V3 + V?x4 =0, (A.2)
V*2xy — 2MV*xp + (M? + 2|V |?)x3 — 2M Vxg + Vx5 =0, (A.3)

V*%xy_5—2MV*xy_a+ (M2 +2|V|?)xn_3 — 2MVxy_2+ V2xy_1=0, (A.4)
V*2xy_a—2MV*xy_g+ (M2 4+ 2|V P xy_2+ (V2 —2MV)xy_1=0, (A5)
V2rn_a(V*% = 2MV*)xy_o+ [M2 = M(V +V*) +2|V[*]xy_1=0.  (A6)

After a bit of algebra, we can equivalently transform this equation set into

X1= X2 —|p|*X3, (A.7)
X2 = X3 — |p|*Xa, (A.8)
Xn-3=Xy-2—|p/*Xn_1, (A.9)
Xy_2=Xn-1—pXN-1, (A.10)

where we have introduced new parameter and variables

o Vo V]et?
i0
= = = , A1l
p=lple o i (A.11)
X,=(p") "k, (n=1,...,N—1). (A.12)
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We note thatV (and p) is a complex parameter in general (S&gpendix B. The new
simple recursion relation allows us to analytically determine thé¢Xet..., Xy_1} (and
then the zero eigenstate, ..., xy_1}) for any p (i.e., for any realM and complexv).

After some combinatoridswe obtain for 1< n < N — 3

N-3-n—k
XnZZ( X " >(—|/0|2)k+1XN1

k=0

N—-2-n—k
PR (VT e
k=0

(N=3-n—K! , >4
ZE:kKN—3—n—2MK_MI) Xn-1
k=0

Z (N—2—-n—k)!

k!(N—2—n—2k)!(_|’0|2)kXN_2’ (A.13)

k=0
and forn = N — 2 (seg(A.10))

Xn2=0A-p)Xy_1. (A.14)
Using the equality

m m m+1
= A.15
<P>+(P+l) <P+1)’ (A-15)
we can rewritgA.13) as (with 1<n < N — 3)

X, = [Z (N— 1k—n —k) (_|p|2)k

k=0

—pZ(N_Zk_”_")(—|p|2)"]XN_1. (A.16)
k=0

Again, using another equalif24]
gmmx=gmu§:@¢ﬁ(p_;_k)acmmyhk%, (A.17)
k=0

we obtain for 1< n < N — 3 and for|p| < 3

2Xy_
X, = ——=22_[|p|N""sinh(N — n)a — plpN 1" sinh(N — 1 —n)a], (A.18)
V1—4p|?
with
1 L1
coshk=— < a=cosh~— (a>0). (A.19)
2|p| 2lp

1 Another somewhat simpler solution of the above equation set is preserjf&].in
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For|p| > % the expression ok y is similar to(A.18) but with hyperbolic functions (sinh
and cosh) replaced respectively by trigonometric ones (sin and cos).
Finally, from (A.12) we have altogether

xp=Ce "[sinh(N — ) — €'’ sinh(N —1—n)a] (1<n<N-1), (A.20)

whereC is the normalization constant determined by the normalization equation

N-1
=1 (A.21)
n=1

We note that this normalization is nothing other than the unitarity condition of the rotation
matrix (see(8) and(25), (26)).

A.2. Zero-mode localization at the end-point n = N

The chiral boundary conditions (CBC) and the value of parametes |V|/|M| are
two crucial factors that determine the localization pattern of the chiral zero-mode of
fermion. For, e.g., in the previous subsection we have seen that, Wwhenl/2, along
with CBCs Q1 = Ong =0, ¢1€_1’NQN,L = VpOn-11 (2) we can localize the left-
handed zero mode @ field around site: = 1 (A.20).

On the intuitive ground, we expect that the “mirror image”(8§f (apart from the re-
quirementp| < 1/2)

:
Q1r=0ngr=0.  $21,01.=V;02.. (A.22)

would produce a left-handed zero modgdfield localized aiz = N. A similar calculation
indeed confirms this localization pattern. Specifically, if we dengtéd = 2,..., N) the
zero-mode subject to CBG#.22), andx; (j =1,..., N — 1) subject to CBCH2) as
before, we find

Vi=xyi1; (=2,...,N), (A.23)
or even more explicitly (se@A.20))

yn = Ce N [sinh(n — D — e/ sinh(n — 2)a]  (2<n < N). (A.24)

Appendix B. The complex-valued link field VEV from broken Wilson line

Since the link fieldsp, ,+1 transform non-trivially under two different groups, we may
expect its VEV to be complex in general. It is because in this case the VEVs phase could
not be rotated away in general. The standard and rigorous method to determine the VEV
is to write down and then minimize the corresponding potential. It turnf2@Jithat there
always exist ranges of potential parameters which generate complex VEV. In this appendix,
however, we just recapitulate the complexity nature of link field VEV from the latticized
extra dimension perception which is derived14] in details. Though the approach taken
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in this work does not strictly stem from latticizing the fifth dimension, this perception could
still serve as the principle illustration.

To make the connection between DD theory and its latticized ED counterpart, we inter-
pret the link field as a Wilson line connecting two neighboring branes

(n+1)a
Gnnr1 ™~ eXp( f igXy dy) ~expigaxn), (B.1)

na

wherey, essentially is the ED component of gauge figldanda are gauge coupling and
lattice spacing, respectively.

Following the DD symmetry breakingU(2) x U(1)]Y — [SU(2) x U(1)], only one
linear combinatioryg of link fields remains massless at the classical level

1 N
X0 = ,—§ Xn- (B.2)
Nn:l

In the leading order with radiative correction, by minimizing the 1-loop effective potential
of xo0, one obtaind

(x0) = 2k
X0 = adw

From(B.1), (B.2), one see that in the leading order the link fields assume a uniform com-
plex VEV

(k € N). (B.3)

| 2k
<¢n,n+l> ~ eXp(%) (B4)

Actually, this phase can be considered arbitrary.

Appendix C. Wave function overlap in theory space

In this appendix we present the analytical expressions of zero-mode wave function over-
laps in the theory space, from which follow the mass matrix ele (27), (28).
These expressions in turn were compiled using the exact soly#oR6), (A.24) for the
wave functions. In what follows we us€X to denote the overlap of two wave functions
localized at the same site= 1, andXY the overlap of the first wave function localized
atn =1 and the second at= N. All other overlap configurations can be easily found by
virtue of relation(A.23).

2 The finiteness of 1-loop effective potential requires the mass of fermionic tower be trigonometric function

of the mode numbefL4]. In the continuum limit such as in &% /7" compactification, the orbifold boundary
conditions(2) can fulfill this requirement.
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It follows from Eqs.(27), (28)that

N-1
XX = ( Z x,(ll)*x,(lz)> + xf\,ll*le\,zil

n=1

(N=1)(i01—ibr—a1—a2) _
— G162 (e 1Tz leN(a1+012) (1 _ e—iel—al) (1 _ ei@z—(xz)

4 1 — e~ ((01—ib2—a1—a2)

e(N—l)(ié)l—i@g—otl—sz) _

1, . .
(a1—a2) (1 _ ,—if1—a1 _ if+tar
1 — o—GO—ibr—artan) ¢ (1-e J(1-e )

e(N—D(i01—iO2+a1—az) _

1 . .
N(—ai+az) (1 _ ,—ith+a1 _ Lith—a2
1 — ¢ (i01—i02+a1—a2) e (1 e )(1 € )
e(Nfl)(i917i02+ot1+a2) -1
+

1 ey e*N(a1+a2) (1 _ e*i91+011) (1 _ ei92+a2)>
J— e_ -

+ C1Ce' N =D01792) ginhy; sinhay, (C.1)

N-1

1 2 2 1 2

0= (D) )
n=2

= C1C2¢" 7 2%2[sinh(N — Dag — e "™ sinh(N — 2)a1 ] sinha
C1Cp [ eN-Dibr—ibr—a1—az) _ 1
4 <_ 1 — ¢—((01—i0—a1—a2)
x (1— e—iel—al)(l _ e—i92+ot2)

eN=2)(i01—ibr—as+az) _ 1

elelfzezfalfazeNotlJraz

el@]_—l@z—d]_-l—azeN(xl—(xz

+ 1 — e~ (i01—ib2—a1+a2)

% (1 _ e—i91—al)(1 . e—i@z—az)
e(N=2)(i01—iOx+a1—0a2) _ 1

+ i01—i92+oz1—aze—Na1+a2
1 — e~ (i01—ibta1—a2)

% (1 _ e—i01+a1)(1 _ e—i92+a2)

e(N=2)(i01—iO2+a1+0a2) _ 1

ei91—i92+a1+aze—Na1—a2
1 — ¢~ (i01—if2+a1+a2)

% (1 _ €7i91+a1)(1 _ ei920{2)>
+ C1C2e! N=D0=N02 ginhyy (C.2)
x [sinh(N — D)oz — e %2 sinh(N — 2)ez2],

whereC1, C; are the normalization factors, which are determined also from the overlap of
the respective wave function with itself.
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Appendix D. Numerical tables

Table 1

Central values and uncertainties for the masses of the 6 quarks evaluated
at Mz, for the two ratiosn, /m; andmg/mg, for the absolute values

of the CKM matrix elements and the CP paramejgrg

xi fxi) e — XN /2
my 2.33x 1073 0.45x 1073
me 0.685 Q061

my 181 13

my 4.69x 1073 0.66x 10°3
mg 0.0934 00130

my, 3.00 Q11
my/mgq 0.497 Q119
mg/my 19.9 39

[Via| 0.97485 000075

[ Vs 0.2225 00035

Vi | 0.00365 00115
[Veal 0.2225 00035
[Ves| 0.9740 00008
[Vep! 0.041 Q003

[Vid| 0.009 Q005

[Vis | 0.0405 00035

[Vip| 0.99915 000015

P 0.22 010

i 0.35 Q05

Table 2
20-parameter space solutions found in 4 different cases of the model presented in $datién= 10 for all
cases)

(QUD1) (QUIDN) (QUDN) (DIQUN)
@o1 2.290 0208 2311 Q215
@02 0.007 0236 Qo011 Q251
@03 1.497 0220 1656 0213
ay1 0.771 0439 0623 Q572
ay? 0.759 1900 0603 0823
ays 0.927 0433 Q722 Q745
api 0.829 0027 Q794 0541
ap? 0.535 Q022 Q471 Q057
ap3 1.123 0029 1105 0022
fo1 1.002 Q974 1234 0959
002 3.862 0983 4702 0958
803 1.678 0989 1999 0965
ou1 1.163 1407 1276 Q197
Oy2 1.100 1478 1246 1367
0y3 1.247 —5.290 1420 —5.52
0p1 —0.204 —0.535 -0.135 -0.182
6p2 3.098 4715 2809 3471
0p3 0.086 9645 —-0.174 9499
kyv//2 7837 6663 7836 7121

Kpv/v/2 135 2324 137 2648
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